1. Matrix Decomposition and Inverses
 Let $A \in \mathbb{R}^{3 \times 2}$ have full column rank and let its singular value decomposition (SVD) be $U \Sigma V^T$, where all non-diagonal entries of $\Sigma \in \mathbb{R}^{3 \times 2}$ are 0. Here, $U \in \mathbb{R}^{3 \times 3}$ and $V \in \mathbb{R}^{2 \times 2}$ are matrices such that the columns of each form an orthonormal set.

 (a) Show that $A^T A$ is invertible.

 (b) Let $B = (A^T A)^{-1} A^T$. Write B in terms of U, V, and the diagonal entries of Σ. Show that $BA = I$.

 (c) Show that $A(A^T A)^{-1} A^T$ is a projection matrix that projects \mathbb{R}^3 onto the column space of A.

 (d) Now suppose $A \in \mathbb{R}^{2 \times 2}$ instead and A is full rank. Express A^{-1} in terms of U, V, and the diagonal entries of Σ.

2. Least Squares and Gram-Schmidt
 Consider the least squares problem
 \[
 \hat{x}^* = \arg\min_{\hat{x} \in \mathbb{R}^n} \| A\hat{x} - \hat{b} \|_2^2
 \]
 where $A \in \mathbb{R}^{m \times n}$, $\hat{b} \in \mathbb{R}^m$ and assume A is full column rank. One way to solve this least-squares problems is to use Gram-Schmidt Orthonormalization (GSO). Using GSO, the matrix A can be written as,
 \[
 A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}
 \]
where Q is an orthonormal matrix and R is an upper-triangular matrix. The columns of Q_1 form an orthonormal basis for the range space $\mathcal{R}(A)$ and columns of Q_2 form an orthonormal basis for the range space $\mathcal{R}(A)^\perp$. Moreover, R_1 is upper triangular and invertible.

(a) Show that the squared norm of the residual is given by

$$
\|\vec{r}\|_2^2 := \|\vec{b} - A\vec{x}\|_2^2 = \|Q_1^\top \vec{b} - R_1 \vec{x}\|_2^2 + \|Q_2^\top \vec{b}\|_2^2. \quad (3)
$$

(b) Find \vec{x}^* such that the squared norm of the residual in Equation (3) is minimized. Your expression for \vec{x}^* should only use some or all of the following terms: Q_1, Q_2, R_1, \vec{b}.

(c) Check if the expression for \vec{x}^* obtained in the previous part is equivalent to the one obtained by the formula, $\vec{x}^* = (A^\top A)^{-1} A^\top \vec{b}$.