1. Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ have the eigendecomposition $P \Lambda P^{-1}$ where $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix with entries consisting of the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $P \in \mathbb{R}^{n \times n}$ is an invertible matrix. Note that this is equivalent to stating that A is diagonalizable via the transformation,

$$
\begin{equation*}
P^{-1} A P=\Lambda \tag{1}
\end{equation*}
$$

(a) Show that $A^{m}=P \Lambda^{m} P^{-1}$, for integer $m \geq 1$.
(b) Show that determinant of A is the product of its eigenvalues, i.e.

$$
\begin{equation*}
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i} \tag{2}
\end{equation*}
$$

HINT: We have the identity $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$.

2. Invertibility of $A^{\top} A$

In this problem, we show that if the matrix $A \in \mathbb{R}^{m \times n}$ has a full column rank, then the matrix $A^{\top} A$ is invertible.
(a) Show that if a vector \vec{x} is in the null space of A then \vec{x} is in the null space of $A^{\top} A$.
(b) Conversely, show that if \vec{x} is in the null space of $A^{\top} A$ then \vec{x} is in the null space of A.
(c) Given that matrix A has a full column rank, what can you say about its null space? What does this imply about the null space and invertibility of the matrix $A^{\top} A$?

