1. Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ have the eigendecomposition $P \Lambda P^{-1}$ where $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix with entries consisting of the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $P \in \mathbb{R}^{n \times n}$ is an invertible matrix. Note that this is equivalent to stating that A is diagonalizable via the transformation,

$$
\begin{equation*}
P^{-1} A P=\Lambda \tag{1}
\end{equation*}
$$

(a) Show that $A^{m}=P \Lambda^{m} P^{-1}$, for integer $m \geq 1$.

Solution:

$$
\begin{align*}
A^{m} & =\left(P \Lambda P^{-1}\right)\left(P \Lambda P^{-1}\right) \ldots\left(P \Lambda P^{-1}\right) \quad m \text { times } \tag{2}\\
& =P \Lambda\left(P^{-1} P\right) \Lambda\left(P^{-1} P\right) \ldots \Lambda\left(P^{-1} P\right) \Lambda P^{-1} \tag{3}\\
& =P \Lambda^{m} P^{-1} \tag{4}
\end{align*}
$$

The last equality follows from the repeated application of the identity $P^{-1} P=I$.
(b) Show that determinant of A is the product of its eigenvalues, i.e.

$$
\begin{equation*}
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i} \tag{5}
\end{equation*}
$$

HINT: We have the identity $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$.
Solution: Write down eigendecomposition of A and use properties of determinant given in the hint.

$$
\begin{align*}
\operatorname{det}(A) & =\operatorname{det}\left(P \Lambda P^{-1}\right) \tag{6}\\
& =\operatorname{det}(P) \operatorname{det}(\Lambda) \operatorname{det}\left(P^{-1}\right) \tag{7}\\
& =\operatorname{det}\left(P P^{-1}\right) \operatorname{det}(\Lambda) \tag{8}\\
& =\operatorname{det}(\Lambda) \tag{9}\\
& =\prod_{i=1}^{n} \lambda_{i} \tag{10}
\end{align*}
$$

2. Invertibility of $A^{\top} A$

In this problem, we show that if the matrix $A \in \mathbb{R}^{m \times n}$ has a full column rank, then the matrix $A^{\top} A$ is invertible.
(a) Show that if a vector \vec{x} is in the null space of A then \vec{x} is in the null space of $A^{\top} A$.

Solution:

$$
\begin{align*}
\vec{x} \in \mathcal{N}(A) & \Longleftrightarrow A \vec{x}=\overrightarrow{0} \tag{11}\\
& \Longleftrightarrow A^{\top} A \vec{x}=\overrightarrow{0} \tag{12}\\
& \Longleftrightarrow \vec{x} \in \mathcal{N}\left(A^{\top} A\right) \tag{13}
\end{align*}
$$

Where line 12 follows by multiplying both sides of $A \vec{x}=0$ by A^{\top}
(b) Conversely, show that if \vec{x} is in the null space of $A^{\top} A$ then \vec{x} is in the null space of A.

Solution:

$$
\begin{align*}
\vec{x} \in \mathcal{N}\left(A^{\top} A\right) & \Longleftrightarrow A^{\top} A \vec{x}=\overrightarrow{0} \tag{14}\\
& \Longrightarrow \vec{x}^{\top} A^{\top} A \vec{x}=0 \tag{15}\\
& \Longrightarrow(A \vec{x})^{\top} A \vec{x}=0 \tag{16}\\
& \Longrightarrow\|A \vec{x}\|_{2}^{2}=0 \tag{17}\\
& \Longrightarrow A \vec{x}=\overrightarrow{0} \tag{18}\\
& \Longrightarrow \vec{x} \in \mathcal{N}(A) \tag{19}
\end{align*}
$$

Where line 15 follows by multiplying both sides of $A^{\top} A \vec{x}=\overrightarrow{0}$ by \vec{x}^{\top} and line 18 follows from the properties of norms.
(c) Given that matrix A has a full column rank, what can you say about its null space? What does this imply about the null space and invertibility of the matrix $A^{\top} A$?
Solution: $\mathcal{N}(A)=\{\overrightarrow{0}\}$. From the previous parts, we have shown that $\mathcal{N}(A)=\mathcal{N}\left(A^{\top} A\right)$ then $\mathcal{N}\left(A^{\top} A\right)=$ $\{\overrightarrow{0}\}$ and thus $A^{\top} A$ is invertible.

