1. Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ have the eigendecomposition $P\Lambda P^{-1}$ where $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix with entries consisting of the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $P \in \mathbb{R}^{n \times n}$ is an invertible matrix. Note that this is equivalent to stating that A is diagonalizable via the transformation,

$$P^{-1}AP = \Lambda. \tag{1}$$

(a) Show that $A^m = P\Lambda^m P^{-1}$, for integer $m \ge 1$.

Solution:

$$A^{m} = (P\Lambda P^{-1})(P\Lambda P^{-1})\dots(P\Lambda P^{-1}) \quad m \text{ times}$$
⁽²⁾

$$= P\Lambda(P^{-1}P)\Lambda(P^{-1}P)\dots\Lambda(P^{-1}P)\Lambda P^{-1}$$
(3)

$$=P\Lambda^m P^{-1}.$$
(4)

The last equality follows from the repeated application of the identity $P^{-1}P = I$.

(b) Show that determinant of A is the product of its eigenvalues, i.e.

$$\det(A) = \prod_{i=1}^{n} \lambda_i.$$
(5)

HINT: We have the identity det(XY) = det(X) det(Y).

Solution: Write down eigendecomposition of A and use properties of determinant given in the hint.

$$\det(A) = \det\left(P\Lambda P^{-1}\right) \tag{6}$$

$$= \det(P) \det(\Lambda) \det(P^{-1}) \tag{7}$$

$$= \det\left(PP^{-1}\right)\det(\Lambda) \tag{8}$$

$$= \det(\Lambda) \tag{9}$$

$$=\prod_{i=1}^{n}\lambda_{i} \tag{10}$$

2024-01-19 12:36:00-08:00

2. Invertibility of $A^{\top}A$

In this problem, we show that if the matrix $A \in \mathbb{R}^{m \times n}$ has a full column rank, then the matrix $A^{\top}A$ is invertible.

(a) Show that if a vector \vec{x} is in the null space of A then \vec{x} is in the null space of $A^{\top}A$.

Solution:

$$\vec{x} \in \mathcal{N}(A) \iff A\vec{x} = \vec{0}$$
 (11)

$$\implies A^{\top} A \vec{x} = \vec{0} \tag{12}$$

$$\iff \vec{x} \in \mathcal{N}(A^{\top}A) \tag{13}$$

Where line 12 follows by multiplying both sides of $A\vec{x} = 0$ by A^{\top}

(b) Conversely, show that if x is in the null space of A^TA then x is in the null space of A. Solution:

$$\vec{x} \in \mathcal{N}(A^{\top}A) \iff A^{\top}A\vec{x} = \vec{0} \tag{14}$$

$$\implies \vec{x}^{\top} A^{\top} A \vec{x} = 0 \tag{15}$$

$$\implies (A\vec{x})^{\top}A\vec{x} = 0 \tag{16}$$

$$\implies \|A\vec{x}\|_2^2 = 0 \tag{17}$$

$$\implies A\vec{x} = \vec{0} \tag{18}$$

$$\implies \vec{x} \in \mathcal{N}(A) \tag{19}$$

Where line 15 follows by multiplying both sides of $A^{\top}A\vec{x} = \vec{0}$ by \vec{x}^{\top} and line 18 follows from the properties of norms.

(c) Given that matrix A has a full column rank, what can you say about its null space? What does this imply about the null space and invertibility of the matrix $A^{\top}A$?

Solution: $\mathcal{N}(A) = \{\vec{0}\}$. From the previous parts, we have shown that $\mathcal{N}(A) = \mathcal{N}(A^{\top}A)$ then $\mathcal{N}(A^{\top}A) = \{\vec{0}\}$ and thus $A^{\top}A$ is invertible.