1. Proof of the Fundamental Theorem of Linear Algebra

In this question, we will prove the fundamental theorem of linear algebra. For any $A \in \mathbb{R}^{m \times n}$, let $\mathcal{N}(A)$, $\mathcal{R}(A)$, and rank(A) denote the null space, range and rank of A respectively. For any subspace, S with dimension, dim(S), let S^{\perp} denote its the subspace orthogonal to S. The fundamental theorem of linear algebra states that,

$$\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n.$$
(1)

The proof technique we employ will first show that,

$$\mathcal{N}(A) = \mathcal{R}(A^{\top})^{\perp}.$$
 (2)

Then we will prove that we can find orthonormal vectors $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ such that $\mathcal{N}(A) = \operatorname{span}(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_\ell)$ and $\mathcal{R}(A^{\top}) = \operatorname{span}(\vec{e}_{\ell+1}, \vec{e}_{\ell+2}, \dots, \vec{e}_n)$. As a corollary we get the rank-nullity theorem:

$$\dim(\mathcal{N}(A)) + \operatorname{rank}(A) = n. \tag{3}$$

(a) First, show that $\mathcal{N}(A) \subseteq \mathcal{R}(A^{\top})^{\perp}$. *HINT: Consider* \vec{u} in $\mathcal{N}(A), \vec{v} \in \mathcal{R}(A^{\top})$ and show that $\vec{u}^{\top}\vec{v} = 0$.

(b) Now show that: $\mathcal{R}(A^{\top})^{\perp} \subseteq \mathcal{N}(A)$.

HINT: Show that any vector \vec{v} that is orthogonal to all vectors in the range of A^{\top} satisfies $A\vec{v} = 0$. To do this, consider $\vec{v} \in R(A^{\top})^{\perp}$ and what it implies for $\vec{v}^{\top}A^{\top}$.

- (c) Let dim(N(A)) = ℓ and let e₁,..., e_ℓ be an orthonormal basis for N(A). Consider an extension of the basis to an orthonormal basis, e₁,..., e_n for ℝⁿ. We will prove that e_{ℓ+1},..., e_n form a basis for R(A^T) and as a consequence, the dimension of R(A^T) is n − ℓ.
 - i. Show that $\mathcal{R}(A^{\top})$ lies in the span of $\vec{e}_{\ell+1}, \ldots, \vec{e}_n$. *HINT: Express any vector* $\vec{u} \in \mathcal{R}(A^{\top})$ as $\vec{u} = \sum_{i=1}^n \alpha_i \vec{e}_i$. What are the values of α_i ?

ii. From part (i) we know that $\mathcal{R}(A^{\top}) \subseteq \operatorname{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$, but we want something stronger. Show that in fact $\mathcal{R}(A^{\top}) = \operatorname{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$.

HINT: First, prove dim $(\mathcal{R}(A^{\top})) =$ dim (span $(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)) = n - \ell$ by contradiction. Assume dim $(\mathcal{R}(A^{\top})) = k < n - \ell$, show that a vector $\vec{u} \in$ span $(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$ and $\vec{u} \notin \mathcal{R}(A^{\top})$ cannot exist.

Specifically, let $\vec{f_1}, \vec{f_2}, \ldots, \vec{f_k}$ be an orthonormal basis for $\mathcal{R}(A^{\top})$, we can find non-zero $\vec{u_{\perp}} = \vec{u} - \sum_{i=1}^{k} (\vec{f_i}^{\top} \vec{u}) \vec{f_i}$ that is orthogonal to $\mathcal{R}(A^{\top})$. Does $\vec{u_{\perp}}$ lie in $\mathcal{N}(A)$? Does $\vec{u_{\perp}}$ also lie in span $(\vec{e_{\ell+1}}, \ldots, \vec{e_n})$? Does this lead to a contradiction? Think of $n - \ell = 3$ and k = 2 for visualization.

HINT: Second, you can use without proof the fact that for two subspaces, S_1 and S_2 , if $S_1 \subseteq S_2$ and $\dim(S_1) = \dim(S_2)$ then $S_1 = S_2$.

(d) Using part (c) argue why $\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n$ and why the rank nullity theorem holds.

2. Symmetric Matrices

(a) Show that any symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if there exists a symmetric matrix $C \in \mathbb{R}^{n \times n}$ such that $A = C^{\top}C$.

(b) Draw the region
$$\left\{ \vec{x} \in \mathbb{R}^2 \middle| \vec{x}^\top \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \vec{x} \le 1 \right\}.$$

(c) Draw the region
$$\left\{ \vec{x} \in \mathbb{R}^2 \middle| \vec{x}^\top \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \vec{x} \le 1 \right\}.$$

(d) Why is the region in part (b) bounded, whereas the region in part (c) is unbounded?