1. Proof of the Fundamental Theorem of Linear Algebra

In this question, we will prove the fundamental theorem of linear algebra. For any $A \in \mathbb{R}^{m \times n}$, let $\mathcal{N}(A), \mathcal{R}(A)$, and $\operatorname{rank}(A)$ denote the null space, range and rank of A respectively. For any subspace, \mathcal{S} with dimension, $\operatorname{dim}(\mathcal{S})$, let \mathcal{S}^{\perp} denote its the subspace orthogonal to \mathcal{S}. The fundamental theorem of linear algebra states that,

$$
\begin{equation*}
\mathcal{N}(A) \oplus \mathcal{R}\left(A^{\top}\right)=\mathbb{R}^{n} \tag{1}
\end{equation*}
$$

The proof technique we employ will first show that,

$$
\begin{equation*}
\mathcal{N}(A)=\mathcal{R}\left(A^{\top}\right)^{\perp} \tag{2}
\end{equation*}
$$

Then we will prove that we can find orthonormal vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots \vec{e}_{n}$ such that $\mathcal{N}(A)=\operatorname{span}\left(\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{\ell}\right)$ and $\mathcal{R}\left(A^{\top}\right)=\operatorname{span}\left(\vec{e}_{\ell+1}, \vec{e}_{\ell+2}, \ldots, \vec{e}_{n}\right)$. As a corollary we get the rank-nullity theorem:

$$
\begin{equation*}
\operatorname{dim}(\mathcal{N}(A))+\operatorname{rank}(A)=n \tag{3}
\end{equation*}
$$

(a) First, show that $\mathcal{N}(A) \subseteq \mathcal{R}\left(A^{\top}\right)^{\perp}$.

HINT: Consider \vec{u} in $\mathcal{N}(A), \vec{v} \in \mathcal{R}\left(A^{\top}\right)$ and show that $\vec{u}^{\top} \vec{v}=0$.
(b) Now show that: $\mathcal{R}\left(A^{\top}\right)^{\perp} \subseteq \mathcal{N}(A)$.

HINT: Show that any vector \vec{v} that is orthogonal to all vectors in the range of A^{\top} satisfies $A \vec{v}=0$. To do this, consider $\vec{v} \in R\left(A^{\top}\right)^{\perp}$ and what it implies for $\vec{v}^{\top} A^{\top}$.
(c) Let $\operatorname{dim}(\mathcal{N}(A))=\ell$ and let $\vec{e}_{1}, \ldots, \vec{e}_{\ell}$ be an orthonormal basis for $\mathcal{N}(A)$. Consider an extension of the basis to an orthonormal basis, $\vec{e}_{1}, \ldots, \vec{e}_{n}$ for \mathbb{R}^{n}. We will prove that $\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}$ form a basis for $\mathcal{R}\left(A^{\top}\right)$ and as a consequence, the dimension of $\mathcal{R}\left(A^{\top}\right)$ is $n-\ell$.
i. Show that $\mathcal{R}\left(A^{\top}\right)$ lies in the span of $\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}$.

HINT: Express any vector $\vec{u} \in \mathcal{R}\left(A^{\top}\right)$ as $\vec{u}=\sum_{i=1}^{n} \alpha_{i} \vec{e}_{i}$. What are the values of α_{i} ?
ii. From part (i) we know that $\mathcal{R}\left(A^{\top}\right) \subseteq \operatorname{span}\left(\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}\right)$, but we want something stronger. Show that in fact $\mathcal{R}\left(A^{\top}\right)=\operatorname{span}\left(\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}\right)$.
HINT: First, prove $\operatorname{dim}\left(\mathcal{R}\left(A^{\top}\right)\right)=\operatorname{dim}\left(\operatorname{span}\left(\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}\right)\right)=n-\ell$ by contradiction. Assume $\operatorname{dim}\left(\mathcal{R}\left(A^{\top}\right)\right)=k<n-\ell$, show that a vector $\vec{u} \in \operatorname{span}\left(\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}\right)$ and $\vec{u} \notin \mathcal{R}\left(A^{\top}\right)$ cannot exist.
Specifically, let $\overrightarrow{f_{1}}, \overrightarrow{f_{2}}, \ldots, \overrightarrow{f_{k}}$ be an orthonormal basis for $\mathcal{R}\left(A^{\top}\right)$, we can find non-zero $\vec{u}_{\perp}=$ $\vec{u}-\sum_{i=1}^{k}\left(\vec{f}_{i}^{\top} \vec{u}\right) \vec{f}_{i}$ that is orthogonal to $\mathcal{R}\left(A^{\top}\right)$. Does \vec{u}_{\perp} lie in $\mathcal{N}(A)$? Does \vec{u}_{\perp} also lie in $\operatorname{span}\left(\vec{e}_{\ell+1}, \ldots, \vec{e}_{n}\right)$? Does this lead to a contradiction? Think of $n-\ell=3$ and $k=2$ for visualization.
HINT: Second, you can use without proof the fact that for two subspaces, \mathcal{S}_{1} and \mathcal{S}_{2}, if $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ and $\operatorname{dim}\left(\mathcal{S}_{1}\right)=\operatorname{dim}\left(\mathcal{S}_{2}\right)$ then $\mathcal{S}_{1}=\mathcal{S}_{2}$.
(d) Using part (c) argue why $\mathcal{N}(A) \oplus \mathcal{R}\left(A^{\top}\right)=\mathbb{R}^{n}$ and why the rank nullity theorem holds.

2. Symmetric Matrices

(a) Show that any symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if there exists a symmetric matrix $C \in \mathbb{R}^{n \times n}$ such that $A=C^{\top} C$.
(b) Draw the region $\left\{\vec{x} \in \mathbb{R}^{2} \left\lvert\, \vec{x}^{\top}\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right] \vec{x} \leq 1\right.\right\}$.
(c) Draw the region $\left\{\vec{x} \in \mathbb{R}^{2} \left\lvert\, \vec{x}^{\top}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \vec{x} \leq 1\right.\right\}$.
(d) Why is the region in part (b) bounded, whereas the region in part (c) is unbounded?

