1. Proof of the Fundamental Theorem of Linear Algebra

In this question, we will prove the fundamental theorem of linear algebra. For any $A \in \mathbb{R}^{m \times n}$, let $\mathcal{N}(A)$, $\mathcal{R}(A)$, and rank(A) denote the null space, range and rank of A respectively. For any subspace, S with dimension, dim(S), let S^{\perp} denote its the subspace orthogonal to S. The fundamental theorem of linear algebra states that,

$$\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n. \tag{1}$$

The proof technique we employ will first show that,

$$\mathcal{N}(A) = \mathcal{R}(A^{\top})^{\perp}.$$
(2)

Then we will prove that we can find orthonormal vectors $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ such that $\mathcal{N}(A) = \operatorname{span}(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_\ell)$ and $\mathcal{R}(A^{\top}) = \operatorname{span}(\vec{e}_{\ell+1}, \vec{e}_{\ell+2}, \dots, \vec{e}_n)$. As a corollary we get the rank-nullity theorem:

$$\dim(\mathcal{N}(A)) + \operatorname{rank}(A) = n. \tag{3}$$

(a) First, show that $\mathcal{N}(A) \subseteq \mathcal{R}(A^{\top})^{\perp}$.

HINT: Consider \vec{u} in $\mathcal{N}(A), \vec{v} \in \mathcal{R}(A^{\top})$ and show that $\vec{u}^{\top}\vec{v} = 0$.

Solution: Take a vector \vec{u} from the nullspace: $A\vec{u} = 0, \vec{u} \neq 0$, and a vector \vec{w} from the rowspace: $A^{\top}\vec{v} = \vec{w}$. Now we can show orthogonality:

$$\langle \vec{w}, \vec{u} \rangle = \langle A^{\top} \vec{v}, \vec{u} \rangle = \vec{v}^{\top} A \vec{u} = \vec{v}^{\top} \vec{0} = 0$$
(4)

Therefore, $\vec{u} \in \mathcal{R}(A^{\top})^{\perp}$. Since this holds for every u in $\mathcal{N}(A)$ we have $\mathcal{N}(A) \subseteq \mathcal{R}(A^{\top})^{\perp}$. Note that this is not an equality since we only proved that every vector in the nullspace is orthogonal, not that these vectors are the **only** orthogonal ones.

(b) Now show that: $\mathcal{R}(A^{\top})^{\perp} \subseteq \mathcal{N}(A)$.

HINT: Show that any vector \vec{v} that is orthogonal to all vectors in the range of A^{\top} satisfies $A\vec{v} = 0$. To do this, consider $\vec{v} \in R(A^{\top})^{\perp}$ and what it implies for $\vec{v}^{\top}A^{\top}$.

Solution: Consider $\vec{v} \in \mathcal{R}(A^{\top})^{\perp}$ and $\vec{u} \in \mathcal{R}(A^{\top})$. They are related by $\langle \vec{v}, \vec{u} \rangle = \vec{v}^{\top}\vec{u} = 0$. Each column of A^{\top} is in $\mathcal{R}(A^{\top})$. So we have $\vec{v}^{\top}\vec{u} = 0$ if \vec{u} is a column of A^{\top} . This implies $\vec{v}^{\top}A^{\top} = \vec{0}^{\top}$. Taking transposes gives $(A\vec{v})^{\top} = \vec{0}^{\top}$ which implies that $A\vec{v} = \vec{0}$ and so $\vec{v} \in \mathcal{N}(A)$. Since this holds for any $\vec{v} \in \mathcal{R}(A^{\top})^{\perp}$ we have $\mathcal{R}(A^{\top})^{\perp} \subseteq \mathcal{N}(A)$.

- (c) Let dim(N(A)) = ℓ and let e₁,..., e_ℓ be an orthonormal basis for N(A). Consider an extension of the basis to an orthonormal basis, e₁,..., e_n for ℝⁿ. We will prove that e_{ℓ+1},..., e_n form a basis for R(A^T) and as a consequence, the dimension of R(A^T) is n − ℓ.
 - i. Show that R(A^T) lies in the span of e_{ℓ+1},..., e_n. *HINT: Express any vector* u ∈ R(A^T) as u = ∑_{i=1}ⁿ α_ie_i. What are the values of α_i?
 Solution: We can obtain the coefficient attached to the basis vector e_i by finding the scalar projection (dot product) of u onto e_i. Therefore, by projecting a vector onto an orthonormal one, we see that α_i = 0. Now, take any u ∈ R(A^T). We can express it as a linear combination of A's basis vectors:

$$\vec{u} = \sum_{i=1}^{n} \alpha_i \vec{e_i}.$$
(5)

But we also know from parts (a) and (b) that u is orthogonal to any vectors in the nullspace, which are spanned by/include the first ℓ basis vectors:

$$\vec{u}^{\top}\vec{e}_i = 0 \tag{6}$$

for all $i \in \{1, 2, \dots, \ell\}$. Therefore, $\vec{u}^{\top} \vec{e}_i = \alpha_i = 0$ for all $i \in \{1, 2, \dots, \ell\}$ and subsequently

$$\vec{u} = \sum_{i=\ell+1}^{n} \alpha_i \vec{e}_i. \tag{7}$$

Therefore, any vector $\vec{u} \in \mathcal{R}(A^{\top})$ can be spanned by $\vec{e}_{\ell+1}, \ldots, \vec{e}_n$, making $\mathcal{R}(A^{\top})$ a subset of the span of $\vec{e}_{\ell+1}, \ldots, \vec{e}_n$.

ii. From part (i) we know that $\mathcal{R}(A^{\top}) \subseteq \operatorname{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$, but we want something stronger. Show that in fact $\mathcal{R}(A^{\top}) = \operatorname{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$.

HINT: First, prove dim $(\mathcal{R}(A^{\top}))$ = dim $(\text{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n))$ = $n - \ell$ by contradiction. Assume dim $(\mathcal{R}(A^{\top}))$ = $k < n - \ell$, show that a vector $\vec{u} \in \text{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$ and $\vec{u} \notin \mathcal{R}(A^{\top})$ cannot exist.

Specifically, let $\vec{f_1}, \vec{f_2}, \ldots, \vec{f_k}$ be an orthonormal basis for $\mathcal{R}(A^{\top})$, we can find non-zero $\vec{u_{\perp}} = \vec{u} - \sum_{i=1}^{k} (\vec{f_i}^{\top} \vec{u}) \vec{f_i}$ that is orthogonal to $\mathcal{R}(A^{\top})$. Does $\vec{u_{\perp}}$ lie in $\mathcal{N}(A)$? Does $\vec{u_{\perp}}$ also lie in span $(\vec{e_{\ell+1}}, \ldots, \vec{e_n})$? Does this lead to a contradiction? Think of $n - \ell = 3$ and k = 2 for visualization.

HINT: Second, you can use without proof the fact that for two subspaces, S_1 *and* S_2 *, if* $S_1 \subseteq S_2$ *and* $\dim(S_1) = \dim(S_2)$ *then* $S_1 = S_2$.

Solution: Assume the contrary and let $\vec{f}_1, \ldots, \vec{f}_k$ be an orthonormal basis for $\mathcal{R}(A^{\top})$. Then, there exists \vec{u} in the span of $\vec{e}_{\ell+1}, \ldots, \vec{e}_n$ such that $\vec{u} \notin \mathcal{R}(A^{\top})$. From this, we get $\vec{u}_{\perp} = \vec{u} - \sum_{i=1}^k (\vec{f}_i^{\top} \vec{u}) \vec{f}_i$ is non-zero and orthogonal to $\mathcal{R}(A^{\top})$. Visually, you can think of the range of A^{\top} as the x, y plane, and \vec{u} extends into 3D space outside this plane. From there, we can define a \vec{u}_{\perp} that is perpendicular to the x, y plane simply by using Gram-Schmidt on the basis vectors, for example. Thus, $\vec{u}_{\perp} \in \mathcal{R}(A^{\top})^{\perp} = \mathcal{N}(A)$. However, we also have $\vec{u}_{\perp} \in \text{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$ which is a contradiction as $\mathcal{N}(A)$ and $\text{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$ are orthogonal to each other. Therefore, the dimension of $\mathcal{R}(A^{\top})$ is at least $n - \ell$ and is exactly $n - \ell$ as it is contained in an $n - \ell$ dimensional space. Since, we have $\mathcal{R}(A^{\top}) \subseteq \text{span}(\vec{e}_{\ell+1} \ldots \vec{e}_n)$, and $\dim(\mathcal{R}(A^{\top})) = \dim(\text{span}(\vec{e}_{\ell+1} \ldots \vec{e}_n)) = n - \ell$, we can conclude that $\mathcal{R}(A^{\top}) = \text{span}(\vec{e}_{\ell+1}, \ldots, \vec{e}_n)$.

(d) Using part (c) argue why $\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n$ and why the rank nullity theorem holds.

Solution: We have found a basis $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ such that the first ℓ vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_\ell}$ form a basis for $\mathcal{N}(A)$ and the last $n - \ell$ vectors form a basis for $\mathcal{R}(A^{\top})$. Thus the claim $\mathcal{N}(A) \oplus \mathcal{R}(A^{\top}) = \mathbb{R}^n$ follows. Also,

$$\dim(\mathcal{N}(A)) + \operatorname{rank}(A) = \dim(\mathcal{N}(A)) + \operatorname{rank}(A^{\top})$$
(8)

$$= \dim(\mathcal{N}(A)) + \dim\left(\mathcal{R}(A^{\top})\right) \tag{9}$$

$$=\ell + n - \ell = n. \tag{10}$$

2. Symmetric Matrices

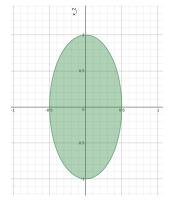


Figure 1: Region corresponding to $4x_1^2 + x_2^2 \le 1$.

(a) Show that any symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if there exists a symmetric matrix $C \in \mathbb{R}^{n \times n}$ such that $A = C^{\top}C$.

Solution: Forward direction:

$$\vec{x}^{\top} C^{\top} C \vec{x} = \|C \vec{x}\|_{2}^{2} \ge 0 \tag{11}$$

and hence $C^{\top}C$ is PSD. Reverse direction: If A is PSD, then $A = UDU^{\top}$ by the spectral theorem with all the diagonal elements of D non-zero. Let $D^{1/2}$ be the square root of D (in this case just the square root of all the diagonal elements) and set $C = UD^{1/2}U^{\top}$. Observe that C is symmetric. Note that there are other non-symmetric C which also satisfy $C^{\top}C = A$. For example, $C = D^{1/2}U^{\top}$.

(b) Draw the region $\left\{ \vec{x} \in \mathbb{R}^2 \middle| \vec{x}^\top \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \vec{x} \le 1 \right\}$. Solution: Simplifying we get

$$4x_1^2 + x_2^2 \le 1. \tag{12}$$

The corresponding region is an ellipse with minor axis 1 and major-axis 2 as shown in Fig. 1:

(c) Draw the region $\left\{ \vec{x} \in \mathbb{R}^2 \middle| \vec{x}^\top \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \vec{x} \le 1 \right\}.$

Solution: Call the given matrix as A. The eigenvalues of A can be found by solving,

$$\det(A - \lambda I) = 0 \tag{13}$$

$$\implies (1-\lambda)^2 - 1 = 0 \tag{14}$$

$$\implies \lambda = 0, \text{ or } \lambda = 2. \tag{15}$$

The eigenvector associated with eigenvalue 0, say \vec{v}_1 , is $\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{\top}$. The eigenvector associated with eigenvalue 2, say \vec{v}_2 , is $\left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right]$. Observe that \vec{v}_1, \vec{v}_2 are orthonormal vectors, and any $\vec{x} \in \mathbb{R}^2$ can be written as $\vec{x} = a\vec{v}_1 + b\vec{v}_2$, for $a, b \in \mathbb{R}$. Then,

$$\vec{x}^{\top} A \vec{x} = (a \vec{v}_1 + b \vec{v}_2)^{\top} A (a \vec{v}_1 + b \vec{v}_2)$$
(16)

$$= a^{2} \vec{v}_{1}^{\top} A \vec{v}_{1} + b^{2} \vec{v}_{2}^{\top} A \vec{v}_{2} + a b \vec{v}_{1}^{\top} A \vec{v}_{2} + b a \vec{v}_{2}^{\top} A \vec{v}_{1}$$
(17)

$$=2b^2.$$
 (18)

Thus we have the condition $|b| \leq \frac{1}{\sqrt{2}}$. Note that *a* is a free parameter and can take any value in \mathbb{R} . Thus the region is a strip parallel to the line y = x of width $\sqrt{2}$ as shown in Fig. 2. Note that the strip is not bounded and any $\vec{x} = a\vec{v_1}$ satisfies the condition for all $a \in \mathbb{R}$.

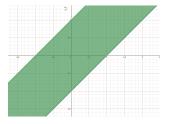


Figure 2: Region corresponding to $x_1^2 + x_2^2 - 2x_1x_2 \le 1$.

- (d) Why is the region in part (b) bounded, whereas the region in part (c) is unbounded?
 - **Solution:** This is because A in part (b) is positive definite while the A in part (c) is positive semi-definite and has a non-trivial nullspace. Suppose \vec{v} is a unit vector in the nullspace of A. Then $\vec{x} = t\vec{v}$ will satisfy the equation for all $t \in \mathbb{R}$, however large.