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1. Proof of the Fundamental Theorem of Linear Algebra

In this question, we will prove the fundamental theorem of linear algebra. For any A ∈ Rm×n, let N (A), R(A),
and rank(A) denote the null space, range and rank of A respectively. For any subspace, S with dimension,
dim(S), let S⊥ denote its the subspace orthogonal to S. The fundamental theorem of linear algebra states that,

N (A) ⊕ R
(
A>)

= Rn. (1)

The proof technique we employ will first show that,

N (A) = R
(
A>)⊥. (2)

Then we will prove that we can find orthonormal vectors ~e1, ~e2, . . . ~en such that N (A) = span(~e1, ~e2, . . . , ~e`)
and R

(
A>)

= span(~e`+1, ~e`+2, . . . , ~en). As a corollary we get the rank-nullity theorem:

dim(N (A)) + rank(A) = n. (3)

(a) First, show that N (A) ⊆ R
(
A>)⊥.

HINT: Consider ~u in N (A), ~v ∈ R
(
A>)

and show that ~u>~v = 0.

Solution: Take a vector ~u from the nullspace: A~u = 0, ~u 6= 0, and a vector ~w from the rowspace: A>~v =
~w. Now we can show orthogonality:

〈~w, ~u〉 =
〈
A>~v, ~u

〉
= ~v>A~u = ~v>~0 = 0 (4)

Therefore, ~u ∈ R
(
A>)⊥. Since this holds for every u in N (A) we have N (A) ⊆ R

(
A>)⊥. Note that

this is not an equality since we only proved that every vector in the nullspace is orthogonal , not that these
vectors are the only orthogonal ones.

(b) Now show that: R
(
A>)⊥ ⊆ N (A).

HINT: Show that any vector ~v that is orthogonal to all vectors in the range of A> satisfies A~v = 0. To do
this, consider ~v ∈ R(A>)⊥ and what it implies for ~v>A>.

Solution: Consider ~v ∈ R
(
A>)⊥ and ~u ∈ R

(
A>)

. They are related by 〈~v, ~u〉 = ~v>~u = 0. Each column
of A> is in R

(
A>)

. So we have ~v>~u = 0 if ~u is a column of A>. This implies ~v>A> = ~0>. Taking
transposes gives (A~v)> = ~0> which implies that A~v = ~0 and so ~v ∈ N (A). Since this holds for any
~v ∈ R

(
A>)⊥ we have R

(
A>)⊥ ⊆ N (A).

(c) Let dim(N (A)) = ` and let ~e1, . . . , ~e` be an orthonormal basis for N (A). Consider an extension of the
basis to an orthonormal basis, ~e1, . . . , ~en for Rn. We will prove that ~e`+1, . . . , ~en form a basis for R

(
A>)

and as a consequence, the dimension of R
(
A>)

is n − `.

i. Show that R
(
A>)

lies in the span of ~e`+1, . . . , ~en.
HINT: Express any vector ~u ∈ R

(
A>)

as ~u =
∑n

i=1 αi~ei. What are the values of αi?
Solution: We can obtain the coefficient attached to the basis vector ~ei by finding the scalar projection
(dot product) of ~u onto ~ei. Therefore, by projecting a vector onto an orthonormal one, we see that
αi = 0. Now, take any ~u ∈ R

(
A>)

. We can express it as a linear combination of A’s basis vectors:

~u =
n∑

i=1
αi~ei. (5)
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But we also know from parts (a) and (b) that u is orthogonal to any vectors in the nullspace, which are
spanned by/include the first ` basis vectors:

~u>~ei = 0 (6)

for all i ∈ {1, 2, . . . , `}. Therefore, ~u>~ei = αi = 0 for all i ∈ {1, 2, . . . , `} and subsequently

~u =
n∑

i=`+1
αi~ei. (7)

Therefore, any vector ~u ∈ R
(
A>)

can be spanned by ~e`+1, . . . , ~en, making R
(
A>)

a subset of the
span of ~e`+1, . . . , ~en.

ii. From part (i) we know that R
(
A>)

⊆ span(~e`+1, . . . , ~en), but we want something stronger. Show
that in fact R

(
A>)

= span(~e`+1, . . . , ~en).
HINT: First, prove dim

(
R

(
A>))

= dim(span(~e`+1, . . . , ~en)) = n − ` by contradiction. Assume
dim

(
R

(
A>))

= k < n − `, show that a vector ~u ∈ span(~e`+1, . . . , ~en) and ~u /∈ R
(
A>)

cannot
exist.
Specifically, let ~f1, ~f2, . . . , ~fk be an orthonormal basis for R

(
A>)

, we can find non-zero ~u⊥ =
~u −

∑k
i=1(~f>

i ~u)~fi that is orthogonal to R
(
A>)

. Does ~u⊥ lie in N (A)? Does ~u⊥ also lie in
span(~e`+1, . . . , ~en)? Does this lead to a contradiction? Think of n − ` = 3 and k = 2 for visu-
alization.
HINT: Second, you can use without proof the fact that for two subspaces, S1 and S2, if S1 ⊆ S2 and
dim(S1) = dim(S2) then S1 = S2.
Solution: Assume the contrary and let ~f1, . . . , ~fk be an orthonormal basis for R

(
A>)

. Then, there
exists ~u in the span of ~e`+1, . . . , ~en such that ~u /∈ R

(
A>)

. From this, we get ~u⊥ = ~u−
∑k

i=1(~f>
i ~u)~fi

is non-zero and orthogonal to R
(
A>)

. Visually, you can think of the range of A> as the x, y plane, and
~u extends into 3D space outside this plane. From there, we can define a ~u⊥ that is perpendicular to the
x, y plane simply by using Gram-Schmidt on the basis vectors, for example. Thus, ~u⊥ ∈ R

(
A>)⊥ =

N (A). However, we also have ~u⊥ ∈ span(~e`+1, . . . , ~en) which is a contradiction as N (A) and
span(~e`+1, . . . , ~en) are orthogonal to each other. Therefore, the dimension of R

(
A>)

is at least n− `

and is exactly n − ` as it is contained in an n − ` dimensional space. Since, we have R
(
A>)

⊆
span(~e`+1 . . . ~en), and dim

(
R

(
A>))

= dim(span(~e`+1 . . . ~en)) = n − `, we can conclude that
R

(
A>)

= span(~e`+1, . . . , ~en).

(d) Using part (c) argue why N (A) ⊕ R
(
A>)

= Rn and why the rank nullity theorem holds.

Solution: We have found a basis ~e1, ~e2, . . . , ~en such that the first ` vectors ~e1, ~e2, . . . , ~e` form a basis for
N (A) and the last n − ` vectors form a basis for R

(
A>)

. Thus the claim N (A) ⊕ R
(
A>)

= Rn follows.
Also,

dim(N (A)) + rank(A) = dim(N (A)) + rank
(
A>)

(8)

= dim(N (A)) + dim
(
R

(
A>))

(9)

= ` + n − ` = n. (10)

2. Symmetric Matrices
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Figure 1: Region corresponding to 4x2
1 + x2

2 ≤ 1.

(a) Show that any symmetric matrix A ∈ Rn×n is positive semidefinite if and only if there exists a symmetric
matrix C ∈ Rn×n such that A = C>C.
Solution: Forward direction:

~x>C>C~x = ‖C~x‖2
2 ≥ 0 (11)

and hence C>C is PSD. Reverse direction: If A is PSD, then A = UDU> by the spectral theorem with all
the diagonal elements of D non-zero. Let D1/2 be the square root of D (in this case just the square root of
all the diagonal elements) and set C = UD1/2U>. Observe that C is symmetric. Note that there are other
non-symmetric C which also satisfy C>C = A. For example, C = D1/2U>.

(b) Draw the region

{
~x ∈ R2

∣∣∣∣∣~x>

[
4 0
0 1

]
~x ≤ 1

}
.

Solution: Simplifying we get
4x2

1 + x2
2 ≤ 1. (12)

The corresponding region is an ellipse with minor axis 1 and major-axis 2 as shown in Fig. 1:

(c) Draw the region

{
~x ∈ R2

∣∣∣∣∣~x>

[
1 −1

−1 1

]
~x ≤ 1

}
.

Solution: Call the given matrix as A. The eigenvalues of A can be found by solving,

det(A − λI) = 0 (13)

=⇒ (1 − λ)2 − 1 = 0 (14)

=⇒ λ = 0, or λ = 2. (15)

The eigenvector associated with eigenvalue 0, say ~v1, is
[

1√
2 , 1√

2

]>
. The eigenvector associated with

eigenvalue 2, say ~v2, is
[

1√
2 , − 1√

2

]
. Observe that ~v1, ~v2 are orthonormal vectors, and any ~x ∈ R2 can be

written as ~x = a~v1 + b~v2, for a, b ∈ R. Then,

~x>A~x = (a~v1 + b~v2)>A(a~v1 + b~v2) (16)

= a2~v>
1 A~v1 + b2~v>

2 A~v2 + ab~v>
1 A~v2 + ba~v>

2 A~v1 (17)

= 2b2. (18)

Thus we have the condition |b| ≤ 1√
2 . Note that a is a free parameter and can take any value in R. Thus

the region is a strip parallel to the line y = x of width
√

2 as shown in Fig. 2. Note that the strip is not
bounded and any ~x = a~v1 satisfies the condition for all a ∈ R.
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Figure 2: Region corresponding to x2
1 + x2

2 − 2x1x2 ≤ 1.

(d) Why is the region in part (b) bounded, whereas the region in part (c) is unbounded?

Solution: This is because A in part (b) is positive definite while the A in part (c) is positive semi-definite
and has a non-trivial nullspace. Suppose ~v is a unit vector in the nullspace of A. Then ~x = t~v will satisfy
the equation for all t ∈ R, however large.
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