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1. Proof of the Fundamental Theorem of Linear Algebra

In this question, we will prove the fundamental theorem of linear algebra. For any A € R™*™, let N (4), R(A4),
and rank(A) denote the null space, range and rank of A respectively. For any subspace, S with dimension,
dim(S), let S* denote its the subspace orthogonal to S. The fundamental theorem of linear algebra states that,

N(A)®R(AT) =R". (1)

The proof technique we employ will first show that,

N(A) =R(AT)*. 2)

Then we will prove that we can find orthonormal vectors €7, €5, . . . €, such that N'(A) = span(éy, és, ..., €p)
and R(AT) = span(€r41, €42, - - .,€n). As a corollary we get the rank-nullity theorem:

dim (N (A)) + rank(A) = n. 3)

(a) First, show that V'(A) C R(AT)L.
HINT: Consider @ in N'(A),7 € R(A") and show that @' ¥ = 0.
Solution: Take a vector @ from the nullspace: A = 0, # 0, and a vector w from the rowspace: A’ ¥/ =

w. Now we can show orthogonality:
(W, @) = (A7, @) =T Ai=0"0=0 )

Therefore, @ € R(AT)*. Since this holds for every u in A'(A) we have N'(A) C R(AT)~*. Note that
this is not an equality since we only proved that every vector in the nullspace is orthogonal , not that these
vectors are the only orthogonal ones.

(b) Now show that: R (AT)+ C N (A).

HINT: Show that any vector ¥ that is orthogonal to all vectors in the range of AT satisfies A7 = 0. To do
this, consider 7 € R(AT)L and what it implies for vT AT.

Solution: Consider ¥ € R (A")* and @ € R(A"). They are related by (7, @) = ¢ @& = 0. Each column
of AT isin R(AT). So we have ¢ @ = 0 if @ is a column of AT. This implies 7' AT = . Taking
transposes gives (A7)| = 0' which implies that A7 = 0 and so & € A'(A). Since this holds for any
TeR(AT): wehave R(AT)+ C NV (A).

(¢) Letdim(N(A)) = £and let €1, . .., € be an orthonormal basis for A/(A). Consider an extension of the
basis to an orthonormal basis, €1, . . ., €, for R”. We will prove that €1, .. ., €, form a basis for R (A ")
and as a consequence, the dimension of R (A") is n — £.

i. Show that R(AT) lies in the span of €p41,. .., €.
HINT: Express any vector 4 € R (AT) asi =Y. , a;¢. What are the values of o;?
Solution: We can obtain the coefficient attached to the basis vector ¢; by finding the scalar projection
(dot product) of @ onto é;. Therefore, by projecting a vector onto an orthonormal one, we see that

a; = 0. Now, take any & € R (AT). We can express it as a linear combination of A’s basis vectors:

i=1
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ii.

But we also know from parts (a) and (b) that u is orthogonal to any vectors in the nullspace, which are

spanned by/include the first ¢ basis vectors:
i'e; =0 (6)

foralli € {1,2,...,¢}. Therefore, i' € = o; = O foralli € {1,2,...,¢} and subsequently

=011
Therefore, any vector @ € R(A") can be spanned by €, 1,...,¢&,, making R (A") a subset of the
span of €p41,...,€En.
From part (i) we know that R (A") C span(€s1,...,€,), but we want something stronger. Show

that in fact R (A") = span (€41, .., €,).
HINT: First, prove dim (R (AT)) = dim(span(€yy1,...,6,)) = n — £ by contradiction. Assume

dim(R(AT)) = k < n — £, show that a vector @ € span(€py1,...,6,) and @ ¢ R(A") cannot
exist.

Specifically, let fh ﬁ, ceey f;; be an orthonormal basis for R(AT), we can find non-zero i, =
a— Zle(ﬁﬂ)ﬁ that is orthogonal to R(A"). Does @, lie in N'(A)? Does i also lie in
span(€p41,...,€n)? Does this lead to a contradiction? Think of n — € = 3 and k = 2 for visu-
alization.

HINT: Second, you can use without proof the fact that for two subspaces, S1 and S, if S C Sy and
dim (8;) = dim(Ss) then S; = Sa.

Solution: Assume the contrary and let fi, ..., fi be an orthonormal basis for R(AT). Then, there
exists @ in the span of &1, .. ., &, such that @ ¢ R (AT ). From this, we get @, = @ — Y v, (f;' @) f;
is non-zero and orthogonal to R (AT) . Visually, you can think of the range of AT as the z, y plane, and
4 extends into 3D space outside this plane. From there, we can define a i that is perpendicular to the
x,y plane simply by using Gram-Schmidt on the basis vectors, for example. Thus, 7, € R(AT)+ =
N (A). However, we also have @, € span(€y1,...,€,) which is a contradiction as N (A) and
span(€p41, ..., €y,) are orthogonal to each other. Therefore, the dimension of R (AT) is at least n — /¢
and is exactly n — £ as it is contained in an n — ¢ dimensional space. Since, we have R(AT) -
span(€g41...€,), and dim(R(A")) = dim(span(€41...€,)) = n — ¢, we can conclude that
R(AT) = span (€41, .-, En).

(d) Using part (c) argue why N'(A) & R (AT) = R™ and why the rank nullity theorem holds.

Solution: We have found a basis €1, €3, . . ., €, such that the first £ vectors €1, €3, .. ., €, form a basis for

N (A) and the last n. — £ vectors form a basis for R (A" ). Thus the claim A'(A) ® R (AT) = R™ follows.
Also,

dim (N (A)) + rank (A4) = dim (N (A)) + rank (A") (8)

= dim(N(4)) + dim(R(A")) 9)

=l+n—{=n. (10)

2. Symmetric Matrices
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(a)

(b)

()

Figure 1: Region corresponding to 4z? 4+ x3 < 1.

Show that any symmetric matrix A € R™*"™ is positive semidefinite if and only if there exists a symmetric
matrix C' € R"*" such that A = C' T C.
Solution: Forward direction:

Z'cTez=|Cz|: >0 (11)
and hence C' T C' is PSD. Reverse direction: If A is PSD, then A = UDU T by the spectral theorem with all
the diagonal elements of D non-zero. Let D'/2 be the square root of D (in this case just the square root of
all the diagonal elements) and set C' = UD'/2U . Observe that C' is symmetric. Note that there are other
non-symmetric C' which also satisfy CT C' = A. For example, C = D'/2U .

4 0
Zr F<15.
0

Draw the region {f € R? )
4ot + a2 < 1. (12)

Solution: Simplifying we get
The corresponding region is an ellipse with minor axis 1 and major-axis 2 as shown in Fig. 1:

1 -1
Zr Z<1y.
-1 1

Solution: Call the given matrix as A. The eigenvalues of A can be found by solving,

Draw the region {f € R?

det(A — X)) =0 (13)
— 1-)N2-1=0 (14)
— A=0,0rA=2. (15)

T
The eigenvector associated with eigenvalue 0, say 7/, is [%, %} . The eigenvector associated with

eigenvalue 2, say vs, is [%, —%} . Observe that 91, Uy are orthonormal vectors, and any & € R2 can be

written as & = at + bis, for a,b € R. Then,

T AT = (av) + b)) " A(aty + biiy) (16)
= 0] AV + b2, AUy + abi] Aty + bav, AT (17)
= 2b%, (18)

1
v
the region is a strip parallel to the line y = 2 of width v/2 as shown in Fig. 2. Note that the strip is not

Thus we have the condition |b] < —=. Note that a is a free parameter and can take any value in R. Thus

bounded and any & = av/; satisfies the condition for all a € R.

© UCB EECS 127/ 227AT, Spring 2024. an Rights Reserved. This may not be publicly shared without explicit permission. 3



EECS 127/227AT Discussion 2 2024-01-31 00:28:40-08:00

Figure 2: Region corresponding to z% 4+ x3 — 2x12s < 1.

(d) Why is the region in part (b) bounded, whereas the region in part (c) is unbounded?

Solution: This is because A in part (b) is positive definite while the A in part (c) is positive semi-definite
and has a non-trivial nullspace. Suppose ¥/ is a unit vector in the nullspace of A. Then & = ¥ will satisfy
the equation for all t € R, however large.

© UCB EECS 127/ 227AT, Spring 2024. an Rights Reserved. This may not be publicly shared without explicit permission. 4



