1. SVD

Suppose we have a matrix $A \in \mathbb{R}^{m \times n}$ with rank r. It turns out that its SVD has multiple forms, all of which can be useful depending on the problem we're working on.
We define the compact SVD as follows:

$$
\underbrace{A}_{m \times n}=\underbrace{U_{r}}_{m \times r} \underbrace{\Sigma_{r}}_{r \times r} \underbrace{V_{r}^{\top}}_{r \times n} .
$$

Here, $\Sigma_{r} \in \mathbb{R}^{r \times r}$ is a diagonal matrix containing non-zero singular values of A.

$$
\Sigma_{r}=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]
$$

with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$.
Next, $U_{r} \in \mathbb{R}^{m \times r}$ is given by,

$$
U_{r}=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{r}\right],
$$

where u_{i} is a left singular vector corresponding to non-zero singular value, σ_{i}, for $i=1,2, \ldots, r$. The columns of U_{r} are orthonormal and together they span the columnspace of A.
Finally, $V_{r}^{\top} \in \mathbb{R}^{r \times n}$ is given by,

$$
V_{r}^{\top}=\left[\begin{array}{c}
\vec{v}_{1}^{\top} \\
\vec{v}_{2}^{\top} \\
\vdots \\
\vec{v}_{r}^{\top}
\end{array}\right]
$$

where \vec{v}_{j} is a right singular vector corresponding to non-zero singular value, σ_{j} for $j=1,2, \ldots, r$. The rows of V_{r}^{\top} are orthonormal and span the rowspace of A. Equivalently the columns of V_{r} span the column space of A^{\top}.

The matrix A can be expressed as,

$$
A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{\top}+\ldots+\sigma_{r} \vec{u}_{r} \vec{v}_{r}^{\top}
$$

This is called the dyadic SVD, since it's expressed as the sum of dyads (matrices of the form $u v^{\top}$). Assume now that $m \geq n$.

Another type of SVD which might be more familiar is the full SVD of A which is defined as follows:

Here, $\Sigma \in \mathbb{R}^{m \times n}$ has non-diagonal entries as zero. The diagonal entries of Σ contain the singular values and we can write Σ in terms of Σ_{r} as,

$$
\Sigma=\left[\begin{array}{c|c}
\Sigma_{r} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]
$$

Next, $U \in \mathbb{R}^{m \times m}$ is an orthonormal matrix. U can be expressed in terms of U_{r} as,

$$
U=\underbrace{\left[\begin{array}{lll}
U_{r} \\
& \underbrace{\vec{u}_{r+1}}_{m \times(m-r)} \ldots \ldots & \vec{u}_{m}
\end{array}\right]}_{m \times r}
$$

The columns $\vec{u}_{r+1}, \vec{u}_{r+2}, \ldots, \vec{u}_{n}$ are left singular vectors corresponding to singular value 0 , and together span the nullspace of A^{\top}.

Finally, V^{\top} is an orthonormal matrix and can be expressed in terms of V_{r}^{\top} as,

$$
\left.V^{\top}=\left[\begin{array}{c}
V_{r}^{\top} \\
\vec{v}_{r+1}^{\top} \\
\vdots \\
\vec{v}_{n}^{\top}
\end{array}\right]\right\} \begin{gathered}
r \times n \\
(n-r) \times n
\end{gathered}
$$

The rows $\vec{v}_{r+1}^{\top}, \vec{v}_{r+2}^{\top}, \ldots, \vec{v}_{n}^{\top}$ when transposed are the right singular vectors corresponding to singular value 0 , and together they span the nullspace of A.
(a) For this problem assume that $m>n>r$. Label each of the following as True or False:
(a) $U U^{\top}=I$

Solution: True. $U U^{\top}=I_{m}$ because U is an orthonormal matrix.
(b) $U^{\top} U=I$

Solution: True. $U^{\top} U=I_{m}$ because U is an orthonormal matrix.
(c) $V^{\top} V=I$

Solution: True. $V^{\top} V=I_{n}$ because V is an orthonormal matrix.
(d) $V V^{\top}=I$

Solution: True. $V V^{\top}=I_{n}$ because V is an orthonormal matrix.
(e) $U_{r}^{\top} U_{r}=I$

Solution: True. $U_{r}^{\top} U_{r}=I_{r}$ because the columns of U_{r} are orthonormal.
(f) $U_{r} U_{r}^{\top}=I$

Solution: False. $U_{r} U_{r}^{\top}$ is a $m \times m$, matrix but has rank less than or equal to r (since U_{r} has rank r and product of matrices has rank less than or equal to minimum of individual ranks).
(g) $V_{r} V_{r}^{\top}=I$

Solution: False. $V_{r} V_{r}^{\top}$ is a $n \times n$, matrix but has rank less than or equal to r (since V_{r} has rank r and product of matrices has rank less than or equal to minimum of individual ranks).
(h) $V_{r}^{\top} V_{r}=I$

Solution: True. $V_{r}^{\top} V_{r}=I_{r}$ because the columns of V_{r} are orthonormal.
(b) Find the compact SVD of A, given that it has the following full SVD:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Solution: The compact SVD of A is given by:

$$
A=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
2
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

(c) Find the full SVD of A, given that it has the following compact SVD:

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Solution: Observe that in this case, the full SVD of A has Σ and V^{\top} as those in the compact SVD but $U \in \mathbb{R}^{3 \times 3}$. Thus we need to find a unit-norm column \vec{u}_{3} orthogonal to columns of U_{r}. We can use a system of linear equations to solve this. That is we want $u_{3}=\left[\begin{array}{ll}x, y, z\end{array}\right]$ so we must have

- $[1 / \sqrt{2}, 1 / \sqrt{2}, \quad 0]^{\top} \vec{u}_{3}=0$
- $[0,0,1]^{\top} \vec{u}_{3}=0$
- $\left\|\vec{u}_{3}\right\|_{2}=1$

Check that $\vec{u}_{3}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0\end{array}\right]$ satisfies our requirements.
Thus the full SVD of A is given by:

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Alternatively we can use Gram-Schmidt procedure to find \vec{u}_{3}. This has the added advantage of being useful when we want to find the full SVD when more than one singular vector is missing.

2. SVD Part 2

Consider A to be the 4×3 matrix

$$
A=\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \tag{1}
\end{array}\right]
$$

where \vec{a}_{i} for $i \in\{1,2,3\}$ form a set of orthogonal vectors satisfying $\left\|\vec{a}_{1}\right\|_{2}=3,\left\|\vec{a}_{2}\right\|_{2}=2,\left\|\vec{a}_{3}\right\|_{2}=1$.
(a) What is the SVD of A ? Express it as $A=U \Sigma V^{\top}$, with Σ the diagonal matrix of singular values ordered in decreasing fashion, and explicitly describe U and V.
Solution: The SVD of $A=U \Sigma V^{\top}$. Due to the orthogonality of the \vec{a}_{i} we have that

$$
A^{\top} A=V \Sigma^{2} V^{\top}=\left[\begin{array}{lll}
9 & 0 & 0 \tag{2}\\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $V=I$ and $\Sigma=\operatorname{diag}(3,2,1)$. Finally we have that $U=A \Sigma^{-1}$ which becomes

$$
U=\left[\begin{array}{lll}
\frac{\vec{a}_{1}}{3} & \frac{\vec{a}_{2}}{2} & \frac{\vec{a}_{3}}{1} \tag{3}
\end{array}\right]
$$

(b) What is the dimension of the null space, $\operatorname{dim}(\mathcal{N}(A))$?

Solution: From part (a) all of the singular values of the A are non-zero. So the dimension of the null space is 0 . Alternatively, all the columns of A are orthogonal - so no (non-zero) linear combination of them can equal zero.
(c) What is the rank of $A, \operatorname{rank}(A)$? Provide an orthonormal basis for the range of A.

Solution: The rank of A is simply the number of non-zero singular values. So $\operatorname{rank}(A)=3$. The columns of U (defined above) provide an orthonormal basis for the range of A.
(d) Let I_{3} denote the 3×3 identity matrix. Consider the matrix $\tilde{A}=\left[\begin{array}{l}A \\ I_{3}\end{array}\right] \in \mathbb{R}^{7 \times 3}$. What are the singular values of \tilde{A} (in terms of the singular values of A)?
Solution: We have that $\tilde{A}^{\top} \tilde{A}=A^{\top} A+I_{3}=V\left(\Sigma^{2}+I_{3}\right) V^{\top}$. Hence if we denote σ_{i} as the singular values of A then the singular values of \tilde{A} are $\tilde{\sigma}_{i}=\sqrt{\sigma_{i}^{2}+1}$ which are $\sqrt{10}, \sqrt{5}, \sqrt{2}$.

