1. Gradients and Hessians

The *gradient* of a scalar-valued function $g \colon \mathbb{R}^n \to \mathbb{R}$, is the column vector of length n, denoted as ∇g , containing the derivatives of components of g with respect to the variables:

$$(\nabla g(\vec{x}))_i = \frac{\partial g}{\partial x_i}(\vec{x}), \ i = 1, \dots n.$$
(1)

The *Hessian* of a scalar-valued function $g: \mathbb{R}^n \to \mathbb{R}$, is the $n \times n$ matrix, denoted as $\nabla^2 g$, containing the second derivatives of components of g with respect to the variables:

$$(\nabla^2 g(\vec{x}))_{ij} = \frac{\partial^2 g}{\partial x_i \partial x_j}(\vec{x}), \quad i = 1, \dots, n, \quad j = 1, \dots, n.$$
(2)

For the remainder of the class, we will repeatedly have to take gradients and Hessians of functions we are trying to optimize. This exercise serves as a warm up for future problems. Compute the gradients and Hessians for the following functions:

- (a) Compute the gradient and Hessian (with respect to \vec{x}) for $g(\vec{x}) = \vec{y}^{\top} A \vec{x}$.
- (b) Compute the gradient and Hessian of $h(\vec{x}) = \sum_{i=1}^{n} (x_i \log(x_i) x_i)$ for $\vec{x} \in \mathbb{R}_{++}^n$ and establish that the Hessian is positive semi-definite (as we will see soon in lecture, this establishes that h is a convex function). *NOTE*: In fact, the Hessian is positive definite.

(c) Compute the gradient and Hessian of $g(\vec{x}) = e^{\vec{a}^{\top}\vec{x}+b}$ for $\vec{a}, \vec{x} \in \mathbb{R}^n, b \in \mathbb{R}$ and establish that the Hessian is positive semi-definite.

2. Jacobians

The *Jacobian* of a vector-valued function $\vec{g} \colon \mathbb{R}^n \to \mathbb{R}^m$ is the $m \times n$ matrix, denoted as $D\vec{g}$, containing the derivatives of the components of \vec{g} with respect to the variables:

$$(D\vec{g})_{ij} = \frac{\partial g_i}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$
 (3)

Compute the Jacobian of $\vec{g} \colon \mathbb{R}^n \to \mathbb{R}^n$, where

$$g\left(\begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}\right) = \frac{1}{2} \begin{bmatrix} x_1^2\\ \vdots\\ x_n^2 \end{bmatrix}.$$
 (4)

3. Gradient of the Cross Entropy Loss

Consider the data (\vec{x}_i, y_i) for i = 1, ..., n where $\vec{x} \in \mathbb{R}^d$ and $y_i \in \{0, 1\}$. Consider the parameter vector $\vec{w} \in \mathbb{R}^d$. For each $i \in \{1, ..., n\}$, define the *logistic function* $p_i \colon \mathbb{R}^d \mapsto \mathbb{R}$ given as

$$p_i(\vec{w}) = \frac{1}{1 + e^{-\vec{w}^\top \vec{x}_i}}.$$
(5)

(a) Find the gradient of the function $p_i(\vec{w})$.

(b) For $i \in \{1, ..., n\}$, the cross entropy of $p \in [0, 1]$ against y_i is defined as

$$H_i(p) \doteq -y_i \log(p) - (1 - y_i) \log(1 - p).$$
(6)

Find the gradient of the function $\ell_i(\vec{w}) \doteq H_i(p_i(\vec{w}))$ with respect to \vec{w} .

(c) Define the cross-entropy loss function as the sum of the cross entropy functions over the entire data set:

$$\ell(\vec{w}) = \sum_{i=1}^{n} \ell_i(\vec{w}).$$
(7)

Find the gradient of the function $\ell(\vec{w})$.