1. Gradients and Hessians

The gradient of a scalar-valued function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is the column vector of length n, denoted as ∇g, containing the derivatives of components of g with respect to the variables:

$$
\begin{equation*}
(\nabla g(\vec{x}))_{i}=\frac{\partial g}{\partial x_{i}}(\vec{x}), i=1, \ldots n . \tag{1}
\end{equation*}
$$

The Hessian of a scalar-valued function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is the $n \times n$ matrix, denoted as $\nabla^{2} g$, containing the second derivatives of components of g with respect to the variables:

$$
\begin{equation*}
\left(\nabla^{2} g(\vec{x})\right)_{i j}=\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(\vec{x}), \quad i=1, \ldots, n, \quad j=1, \ldots, n \tag{2}
\end{equation*}
$$

For the remainder of the class, we will repeatedly have to take gradients and Hessians of functions we are trying to optimize. This exercise serves as a warm up for future problems. Compute the gradients and Hessians for the following functions:
(a) Compute the gradient and Hessian (with respect to \vec{x}) for $g(\vec{x})=\vec{y}^{\top} A \vec{x}$.
(b) Compute the gradient and Hessian of $h(\vec{x})=\sum_{i=1}^{n}\left(x_{i} \log \left(x_{i}\right)-x_{i}\right)$ for $\vec{x} \in \mathbb{R}_{++}^{n}$ and establish that the Hessian is positive semi-definite (as we will see soon in lecture, this establishes that h is a convex function). NOTE: In fact, the Hessian is positive definite.
(c) Compute the gradient and Hessian of $g(\vec{x})=e^{\vec{a}^{\top} \vec{x}+b}$ for $\vec{a}, \vec{x} \in \mathbb{R}^{n}, b \in \mathbb{R}$ and establish that the Hessian is positive semi-definite.

2. Jacobians

The Jacobian of a vector-valued function $\vec{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the $m \times n$ matrix, denoted as $D \vec{g}$, containing the derivatives of the components of \vec{g} with respect to the variables:

$$
\begin{equation*}
(D \vec{g})_{i j}=\frac{\partial g_{i}}{\partial x_{j}}, \quad i=1, \ldots, m, \quad j=1, \ldots, n \tag{3}
\end{equation*}
$$

Compute the Jacobian of $\vec{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where

$$
g\left(\left[\begin{array}{c}
x_{1} \tag{4}\\
\vdots \\
x_{n}
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right] .
$$

3. Gradient of the Cross Entropy Loss

Consider the data $\left(\vec{x}_{i}, y_{i}\right)$ for $i=1, \ldots, n$ where $\vec{x} \in \mathbb{R}^{d}$ and $y_{i} \in\{0,1\}$. Consider the parameter vector $\vec{w} \in \mathbb{R}^{d}$. For each $i \in\{1, \ldots, n\}$, define the logistic function $p_{i}: \mathbb{R}^{d} \mapsto \mathbb{R}$ given as

$$
\begin{equation*}
p_{i}(\vec{w})=\frac{1}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}} . \tag{5}
\end{equation*}
$$

(a) Find the gradient of the function $p_{i}(\vec{w})$.
(b) For $i \in\{1, \ldots, n\}$, the cross entropy of $p \in[0,1]$ against y_{i} is defined as

$$
\begin{equation*}
H_{i}(p) \doteq-y_{i} \log (p)-\left(1-y_{i}\right) \log (1-p) \tag{6}
\end{equation*}
$$

Find the gradient of the function $\ell_{i}(\vec{w}) \doteq H_{i}\left(p_{i}(\vec{w})\right)$ with respect to \vec{w}.
(c) Define the cross-entropy loss function as the sum of the cross entropy functions over the entire data set:

$$
\begin{equation*}
\ell(\vec{w})=\sum_{i=1}^{n} \ell_{i}(\vec{w}) \tag{7}
\end{equation*}
$$

Find the gradient of the function $\ell(\vec{w})$.

