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Discussion 4

1. Gradients and Hessians

The gradient of a scalar-valued function g : Rn → R, is the column vector of length n, denoted as ∇g, containing
the derivatives of components of g with respect to the variables:

(∇g(x⃗))i = ∂g

∂xi
(x⃗), i = 1, . . . n. (1)

The Hessian of a scalar-valued function g : Rn → R, is the n × n matrix, denoted as ∇2g, containing the second
derivatives of components of g with respect to the variables:

(∇2g(x⃗))ij = ∂2g

∂xi ∂xj
(x⃗), i = 1, . . . , n, j = 1, . . . , n. (2)

For the remainder of the class, we will repeatedly have to take gradients and Hessians of functions we are trying
to optimize. This exercise serves as a warm up for future problems. Compute the gradients and Hessians for the
following functions:

(a) Compute the gradient and Hessian (with respect to x⃗) for g(x⃗) = y⃗⊤Ax⃗.
Solution: Let A =

[
a⃗1 a⃗2 . . . a⃗n

]
where ai is the i-th column of A. then

g(x⃗) = y⃗⊤Ax⃗ (3)

= y⃗⊤
[
a⃗1 a⃗2 . . . a⃗n

]
x⃗ (4)

= y⃗⊤(⃗a1x1 + a⃗2x2 + . . . + a⃗nxn) (5)

=
n∑

i=1
(y⃗⊤a⃗i)xi. (6)

Thus
∂g

∂xj
(x⃗) = y⃗⊤a⃗j = a⃗⊤

j y⃗, (7)

and the gradient ∇g(x⃗) = A⊤y⃗. Since the gradient does not depend on x⃗, we then have the Hessian
∇2g(x⃗) = 0.

(b) Compute the gradient and Hessian of h(x⃗) =
n∑

i=1
(xi log(xi) − xi) for x⃗ ∈ Rn

++ and establish that the

Hessian is positive semi-definite (as we will see soon in lecture, this establishes that h is a convex function).
NOTE: In fact, the Hessian is positive definite.
Solution: We have

∂h(x⃗)
∂xi

= log(xi)

∂2h(x⃗)
∂x2

i

= 1/xi

∂2h(x⃗)
∂xi∂xj

= 0, for i ̸= j.

Hence the ith entry of ∇h(x⃗) is log(xi) and the Hessian ∇2h(x⃗) is a diagonal matrix with the (i, i)th entry
is 1/xi. As xi are positive, so is 1/xi and so the diagonal matrix has only positive entries, and hence has
positive eigenvalues.
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(c) Compute the gradient and Hessian of g(x⃗) = ea⃗⊤x⃗+b for a⃗, x⃗ ∈ Rn, b ∈ R and establish that the Hessian
is positive semi-definite.

Solution: We can either compute the gradient and Hessian directly or we can use the properties of gradient
and Hessians under composition with linear functions.

We will first see the former.

∂g(x⃗)
∂xi

= ea⃗⊤x⃗+bai

∂2g(x⃗)
∂x2

i

= ea⃗⊤x⃗+ba2
i

∂2g(x⃗)
∂xi∂xj

= ea⃗⊤x⃗+baiaj

Writing these in matrix form, we get,

∇g(x⃗) = ea⃗⊤x⃗+ba⃗

∇2g(x⃗) = ea⃗⊤x⃗+ba⃗a⃗⊤

The Hessian is clearly a rank one positive semi-definite matrix.

To see the second way, we notice that considering e(x) = ex for a scalar x, the derivative and second
derivative of e(x) is just ex. Since the linear transform we are taking is a⊤x + b, we get the same result.

2. Jacobians

The Jacobian of a vector-valued function g⃗ : Rn → Rm is the m × n matrix, denoted as Dg⃗, containing the
derivatives of the components of g⃗ with respect to the variables:

(Dg⃗)ij = ∂gi

∂xj
, i = 1, . . . , m, j = 1, . . . , n. (8)

Compute the Jacobian of g⃗ : Rn → Rn, where

g




x1
...

xn


 = 1

2


x2

1
...

x2
n

 . (9)

Solution: Notice that

gi(x⃗) = 1
2x2

i , so
∂gi

∂xj
(x⃗) =

xi i = j

0 i ̸= j
. (10)

Thus Dg⃗(x⃗) =


x1 · · · 0
...

. . .
...

0 · · · xn

 = diag(x⃗) where diag(x⃗) ∈ Rn×n is the diagonal matrix whose diagonal

entries are the entries of x⃗.
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3. Gradient of the Cross Entropy Loss

Consider the data (x⃗i, yi) for i = 1, . . . , n where x⃗ ∈ Rd and yi ∈ {0, 1}. Consider the parameter vector
w⃗ ∈ Rd. For each i ∈ {1, . . . , n}, define the logistic function pi : Rd 7→ R given as

pi(w⃗) = 1
1 + e−w⃗⊤x⃗i

. (11)

(a) Find the gradient of the function pi(w⃗).
Solution: The gradient is

∇pi(w⃗) =


∂pi

∂w1
(w⃗)
...

∂pi

∂wd
(w⃗)

 . (12)

Here
∂pi

∂wj
(w⃗) = (x⃗i)je−w⃗⊤x⃗i(

1 + e−w⃗⊤x⃗i
)2 . (13)

Thus

∇pi(w⃗) = x⃗i · e−w⃗⊤x⃗i(
1 + e−w⃗⊤x⃗i

)2 (14)

(b) For i ∈ {1, . . . , n}, the cross entropy of p ∈ [0, 1] against yi is defined as

Hi(p) .= −yi log(p) − (1 − yi) log(1 − p). (15)

Find the gradient of the function ℓi(w⃗) .= Hi(pi(w⃗)) with respect to w⃗.

Solution: The gradient is

∇w⃗ℓi(w⃗) =


∂ℓi

∂w1
(w⃗)
...

∂ℓi

∂wd
(w⃗)

 . (16)

We can use the chain rule to find each component:

∂ℓi

∂wj
(w⃗) = −

[
∂Hi

∂p
(pi(w⃗))

] [
∂pi

∂wj
(w⃗)

]
(17)

= −
[

yi

pi(w⃗) − 1 − yi

1 − pi(w⃗)

] [
(x⃗i)je−w⃗⊤x⃗i(
1 + e−w⃗⊤x⃗i

)2

]
(18)

= −
[

yi

1/(1 + e−w⃗⊤x⃗i)
− 1 − yi

e−w⃗⊤x⃗i/(1 + e−w⃗⊤x⃗i)

] [
(x⃗i)je−w⃗⊤x⃗i(
1 + e−w⃗⊤x⃗i

)2

]
(19)

= −

[
yi(1 + e−w⃗⊤x⃗i) − (1 − yi)(1 + e−w⃗⊤x⃗i)

e−w⃗⊤x⃗i

] [
(x⃗i)je−w⃗⊤x⃗i(
1 + e−w⃗⊤x⃗i

)2

]
(20)

= −(x⃗i)j

[
yi

e−w⃗⊤x⃗i

1 + e−w⃗⊤x⃗i
− (1 − yi)

1
1 + e−w⃗⊤x⃗i

]
(21)

= −(x⃗i)j [yi(1 − pi(w⃗)) − (1 − yi)pi(w⃗)] (22)

= −(x⃗i)j [yi − pi(w⃗)] (23)

= (x⃗i)j [pi(w⃗) − yi] . (24)
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Thus
∇w⃗ℓi(w⃗) = x⃗i [pi(w⃗) − yi] . (25)

(c) Define the cross-entropy loss function as the sum of the cross entropy functions over the entire data set:

ℓ(w⃗) =
n∑

i=1
ℓi(w⃗). (26)

Find the gradient of the function ℓ(w⃗).
Solution: Using linearity of the derivatives,

∇ℓ(w⃗) =
n∑

i=1
∇ℓi(w⃗) (27)

=
n∑

i=1
x⃗i · (pi(w⃗) − yi) (28)

= X⊤(p⃗(w⃗) − y⃗). (29)

Here

X =


x⃗⊤

1
...

x⃗⊤
n

 , p⃗(w⃗) =


p1(w⃗)

...
pn(w⃗)

 , y⃗ =


y1
...

yn

 (30)

Notice that this is the same type of gradient as least squares! All it requires is replacing our linear predictors
Xw⃗ with our logistic predictors p⃗(w⃗).
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