## 1. Gradients and Hessians

The gradient of a scalar-valued function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is the column vector of length $n$, denoted as $\nabla g$, containing the derivatives of components of $g$ with respect to the variables:

$$
\begin{equation*}
(\nabla g(\vec{x}))_{i}=\frac{\partial g}{\partial x_{i}}(\vec{x}), i=1, \ldots n \tag{1}
\end{equation*}
$$

The Hessian of a scalar-valued function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is the $n \times n$ matrix, denoted as $\nabla^{2} g$, containing the second derivatives of components of $g$ with respect to the variables:

$$
\begin{equation*}
\left(\nabla^{2} g(\vec{x})\right)_{i j}=\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(\vec{x}), \quad i=1, \ldots, n, \quad j=1, \ldots, n \tag{2}
\end{equation*}
$$

For the remainder of the class, we will repeatedly have to take gradients and Hessians of functions we are trying to optimize. This exercise serves as a warm up for future problems. Compute the gradients and Hessians for the following functions:
(a) Compute the gradient and Hessian (with respect to $\vec{x}$ ) for $g(\vec{x})=\vec{y}^{\top} A \vec{x}$.

Solution: Let $A=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}\end{array}\right]$ where $a_{i}$ is the $i$-th column of $A$. then

$$
\begin{align*}
g(\vec{x}) & =\vec{y}^{\top} A \vec{x}  \tag{3}\\
& =\vec{y}^{\top}\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right] \vec{x}  \tag{4}\\
& =\vec{y}^{\top}\left(\vec{a}_{1} x_{1}+\vec{a}_{2} x_{2}+\ldots+\vec{a}_{n} x_{n}\right)  \tag{5}\\
& =\sum_{i=1}^{n}\left(\vec{y}^{\top} \vec{a}_{i}\right) x_{i} . \tag{6}
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{\partial g}{\partial x_{j}}(\vec{x})=\vec{y}^{\top} \vec{a}_{j}=\vec{a}_{j}^{\top} \vec{y}, \tag{7}
\end{equation*}
$$

and the gradient $\nabla g(\vec{x})=A^{\top} \vec{y}$. Since the gradient does not depend on $\vec{x}$, we then have the Hessian $\nabla^{2} g(\vec{x})=0$.
(b) Compute the gradient and Hessian of $h(\vec{x})=\sum_{i=1}^{n}\left(x_{i} \log \left(x_{i}\right)-x_{i}\right)$ for $\vec{x} \in \mathbb{R}_{++}^{n}$ and establish that the Hessian is positive semi-definite (as we will see soon in lecture, this establishes that $h$ is a convex function). NOTE: In fact, the Hessian is positive definite.
Solution: We have

$$
\begin{aligned}
\frac{\partial h(\vec{x})}{\partial x_{i}} & =\log \left(x_{i}\right) \\
\frac{\partial^{2} h(\vec{x})}{\partial x_{i}^{2}} & =1 / x_{i} \\
\frac{\partial^{2} h(\vec{x})}{\partial x_{i} \partial x_{j}} & =0, \quad \text { for } i \neq j .
\end{aligned}
$$

Hence the $i^{t h}$ entry of $\nabla h(\vec{x})$ is $\log \left(x_{i}\right)$ and the Hessian $\nabla^{2} h(\vec{x})$ is a diagonal matrix with the $(i, i)^{t h}$ entry is $1 / x_{i}$. As $x_{i}$ are positive, so is $1 / x_{i}$ and so the diagonal matrix has only positive entries, and hence has positive eigenvalues.
(c) Compute the gradient and Hessian of $g(\vec{x})=e^{\vec{a}^{\top} \vec{x}+b}$ for $\vec{a}, \vec{x} \in \mathbb{R}^{n}, b \in \mathbb{R}$ and establish that the Hessian is positive semi-definite.

Solution: We can either compute the gradient and Hessian directly or we can use the properties of gradient and Hessians under composition with linear functions.
We will first see the former.

$$
\begin{aligned}
\frac{\partial g(\vec{x})}{\partial x_{i}} & =e^{\vec{a}^{\top} \vec{x}+b} a_{i} \\
\frac{\partial^{2} g(\vec{x})}{\partial x_{i}^{2}} & =e^{\vec{a}^{\top} \vec{x}+b} a_{i}^{2} \\
\frac{\partial^{2} g(\vec{x})}{\partial x_{i} \partial x_{j}} & =e^{\vec{a}^{\top} \vec{x}+b} a_{i} a_{j}
\end{aligned}
$$

Writing these in matrix form, we get,

$$
\begin{aligned}
\nabla g(\vec{x}) & =e^{\vec{a}^{\top} \vec{x}+b} \vec{a} \\
\nabla^{2} g(\vec{x}) & =e^{\vec{a}^{\top} \vec{x}+b} \vec{a} \vec{a}^{\top}
\end{aligned}
$$

The Hessian is clearly a rank one positive semi-definite matrix.
To see the second way, we notice that considering $e(x)=e^{x}$ for a scalar $x$, the derivative and second derivative of $e(x)$ is just $e^{x}$. Since the linear transform we are taking is $a^{\top} x+b$, we get the same result.

## 2. Jacobians

The Jacobian of a vector-valued function $\vec{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the $m \times n$ matrix, denoted as $D \vec{g}$, containing the derivatives of the components of $\vec{g}$ with respect to the variables:

$$
\begin{equation*}
(D \vec{g})_{i j}=\frac{\partial g_{i}}{\partial x_{j}}, \quad i=1, \ldots, m, \quad j=1, \ldots, n \tag{8}
\end{equation*}
$$

Compute the Jacobian of $\vec{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where

$$
g\left(\left[\begin{array}{c}
x_{1}  \tag{9}\\
\vdots \\
x_{n}
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right] .
$$

Solution: Notice that

$$
g_{i}(\vec{x})=\frac{1}{2} x_{i}^{2}, \quad \text { so } \quad \frac{\partial g_{i}}{\partial x_{j}}(\vec{x})= \begin{cases}x_{i} & i=j  \tag{10}\\ 0 & i \neq j\end{cases}
$$

Thus $D \vec{g}(\vec{x})=\left[\begin{array}{ccc}x_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & x_{n}\end{array}\right]=\operatorname{diag}(\vec{x})$ where $\operatorname{diag}(\vec{x}) \in \mathbb{R}^{n \times n}$ is the diagonal matrix whose diagonal entries are the entries of $\vec{x}$.

## 3. Gradient of the Cross Entropy Loss

Consider the data $\left(\vec{x}_{i}, y_{i}\right)$ for $i=1, \ldots, n$ where $\vec{x} \in \mathbb{R}^{d}$ and $y_{i} \in\{0,1\}$. Consider the parameter vector $\vec{w} \in \mathbb{R}^{d}$. For each $i \in\{1, \ldots, n\}$, define the logistic function $p_{i}: \mathbb{R}^{d} \mapsto \mathbb{R}$ given as

$$
\begin{equation*}
p_{i}(\vec{w})=\frac{1}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}} . \tag{11}
\end{equation*}
$$

(a) Find the gradient of the function $p_{i}(\vec{w})$.

Solution: The gradient is

$$
\nabla p_{i}(\vec{w})=\left[\begin{array}{c}
\frac{\partial p_{i}}{\partial w_{1}}(\vec{w})  \tag{12}\\
\vdots \\
\frac{\partial p_{i}}{\partial w_{d}}(\vec{w})
\end{array}\right]
$$

Here

$$
\begin{equation*}
\frac{\partial p_{i}}{\partial w_{j}}(\vec{w})=\frac{\left(\vec{x}_{i}\right)_{j} e^{-\vec{w}^{\top} \vec{x}_{i}}}{\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)^{2}} . \tag{13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\nabla p_{i}(\vec{w})=\vec{x}_{i} \cdot \frac{e^{-\vec{w}^{\top} \vec{x}_{i}}}{\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)^{2}} \tag{14}
\end{equation*}
$$

(b) For $i \in\{1, \ldots, n\}$, the cross entropy of $p \in[0,1]$ against $y_{i}$ is defined as

$$
\begin{equation*}
H_{i}(p) \doteq-y_{i} \log (p)-\left(1-y_{i}\right) \log (1-p) \tag{15}
\end{equation*}
$$

Find the gradient of the function $\ell_{i}(\vec{w}) \doteq H_{i}\left(p_{i}(\vec{w})\right)$ with respect to $\vec{w}$.
Solution: The gradient is

$$
\nabla_{\vec{w}} \ell_{i}(\vec{w})=\left[\begin{array}{c}
\frac{\partial \ell_{i}}{\partial w_{1}}(\vec{w})  \tag{16}\\
\vdots \\
\frac{\partial \ell_{i}}{\partial w_{d}}(\vec{w})
\end{array}\right]
$$

We can use the chain rule to find each component:

$$
\begin{align*}
\frac{\partial \ell_{i}}{\partial w_{j}}(\vec{w}) & =-\left[\frac{\partial H_{i}}{\partial p}\left(p_{i}(\vec{w})\right)\right]\left[\frac{\partial p_{i}}{\partial w_{j}}(\vec{w})\right]  \tag{17}\\
& =-\left[\frac{y_{i}}{p_{i}(\vec{w})}-\frac{1-y_{i}}{1-p_{i}(\vec{w})}\right]\left[\frac{\left(\vec{x}_{i}\right)_{j} e^{-\vec{w}^{\top} \vec{x}_{i}}}{\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)^{2}}\right]  \tag{18}\\
& =-\left[\frac{y_{i}}{1 /\left(1+e^{\left.-\vec{w}^{\top} \vec{x}_{i}\right)}\right.}-\frac{1-y_{i}}{e^{-\vec{w}^{\top} \vec{x}_{i}} /\left(1+e^{\left.-\vec{w}^{\top} \vec{x}_{i}\right)}\right.}\right]\left[\frac{\left(\vec{x}_{i}\right)_{j} e^{-\vec{w}^{\top} \vec{x}_{i}}}{\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)^{2}}\right]  \tag{19}\\
& =-\left[y_{i}\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)-\frac{\left(1-y_{i}\right)\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)}{e^{-\vec{w}^{\top} \vec{x}_{i}}}\right]\left[\frac{\left(\vec{x}_{i}\right)_{j} e^{-\vec{w}^{\top} \vec{x}_{i}}}{\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)^{2}}\right]  \tag{20}\\
& =-\left(\vec{x}_{i}\right)_{j}\left[y_{i} \frac{e^{-\vec{w}^{\top} \vec{x}_{i}}}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}}-\left(1-y_{i}\right) \frac{1}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}}\right]  \tag{21}\\
& =-\left(\vec{x}_{i}\right)_{j}\left[y_{i}\left(1-p_{i}(\vec{w})\right)-\left(1-y_{i}\right) p_{i}(\vec{w})\right]  \tag{22}\\
& =-\left(\vec{x}_{i}\right)_{j}\left[y_{i}-p_{i}(\vec{w})\right]  \tag{23}\\
& =\left(\vec{x}_{i}\right)_{j}\left[p_{i}(\vec{w})-y_{i}\right] . \tag{24}
\end{align*}
$$

Thus

$$
\begin{equation*}
\nabla_{\vec{w}} \ell_{i}(\vec{w})=\vec{x}_{i}\left[p_{i}(\vec{w})-y_{i}\right] . \tag{25}
\end{equation*}
$$

(c) Define the cross-entropy loss function as the sum of the cross entropy functions over the entire data set:

$$
\begin{equation*}
\ell(\vec{w})=\sum_{i=1}^{n} \ell_{i}(\vec{w}) \tag{26}
\end{equation*}
$$

Find the gradient of the function $\ell(\vec{w})$.
Solution: Using linearity of the derivatives,

$$
\begin{align*}
\nabla \ell(\vec{w}) & =\sum_{i=1}^{n} \nabla \ell_{i}(\vec{w})  \tag{27}\\
& =\sum_{i=1}^{n} \vec{x}_{i} \cdot\left(p_{i}(\vec{w})-y_{i}\right)  \tag{28}\\
& =X^{\top}(\vec{p}(\vec{w})-\vec{y}) . \tag{29}
\end{align*}
$$

Here

$$
X=\left[\begin{array}{c}
\vec{x}_{1}^{\top}  \tag{30}\\
\vdots \\
\vec{x}_{n}^{\top}
\end{array}\right], \quad \vec{p}(\vec{w})=\left[\begin{array}{c}
p_{1}(\vec{w}) \\
\vdots \\
p_{n}(\vec{w})
\end{array}\right], \quad \vec{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Notice that this is the same type of gradient as least squares! All it requires is replacing our linear predictors $X \vec{w}$ with our logistic predictors $\vec{p}(\vec{w})$.

