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1. Gradients and Hessians
The gradient of a scalar-valued function g: R™ — R, is the column vector of length n, denoted as Vg, containing
the derivatives of components of g with respect to the variables:
dg
Vg(Z)); = 7), i=1,...n. 1
(Vo(@)i = 32@. i=1....n 1)

The Hessian of a scalar-valued function g: R™ — R, is the n x n matrix, denoted as V?g, containing the second

derivatives of components of g with respect to the variables:

" 0° o .
(Vzg("’f))ij:azgx.(m)v i=1,....,n, 5=1,...,n. (2)
i 0T

For the remainder of the class, we will repeatedly have to take gradients and Hessians of functions we are trying
to optimize. This exercise serves as a warm up for future problems. Compute the gradients and Hessians for the

following functions:

(a) Compute the gradient and Hessian (with respect to &) for g(%) = 5T AZ.

Solution: Let A = [d’l s ... 64 where a; is the i-th column of A. then
g(&) = j" Az 3)
=i @ @ .. a7 @)
=7 (@121 + Gowo + ... +dnTy) (5)
=Y (F" @) (6)
i=1
Thus 9
9 - T - T -
5 @) =7"d; =d;7, ™
x;
and the gradient Vg(#) = AT¢. Since the gradient does not depend on Z, we then have the Hessian
V2g(%) = 0.

(b) Compute the gradient and Hessian of h(Z) = ) (z;log(x;) — ;) for # € R’ and establish that the
i=1
Hessian is positive semi-definite (as we will see soon in lecture, this establishes that & is a convex function).
NOTE: In fact, the Hessian is positive definite.

Solution: We have

on(T)
al‘i - log(mt)
0?h(Z)
ox? Vi
O?h(Z) L,
Dz, 0, for i # j.

Hence the i‘" entry of V(&) is log(w;) and the Hessian V2h () is a diagonal matrix with the (i, i)*" entry
is 1/x;. As x; are positive, so is 1/x; and so the diagonal matrix has only positive entries, and hence has

positive eigenvalues.
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(c) Compute the gradient and Hessian of ¢(Z) = @ &+ for @, 7 € R™, b € R and establish that the Hessian

is positive semi-definite.

Solution: We can either compute the gradient and Hessian directly or we can use the properties of gradient

and Hessians under composition with linear functions.

We will first see the former.

=e a;
O0x; ¢
9*g(7) o E+b 2
Ox? !
0%q(% =T =
g( ) —e Ta:—&-baia]
axi&vj

Writing these in matrix form, we get,

The Hessian is clearly a rank one positive semi-definite matrix.

To see the second way, we notice that considering e(x) = e® for a scalar x, the derivative and second

derivative of e(z) is just e®. Since the linear transform we are taking is a " + b, we get the same result.

2. Jacobians

The Jacobian of a vector-valued function §: R™ — R™ is the m X n matrix, denoted as Dg, containing the

derivatives of the components of g with respect to the variables:

- dg; . .
(Dg)ij:&l:j7 i=1,....m, j=1,...,n. (8
Compute the Jacobian of §: R™ — R", where
T .’E%
1
: == :1. 9
gl |: 7| : (€))
Tn x2
Solution: Notice that
1 0qg; , Ty 1=7
gi(%) = —2?, o) I (@) = J . (10)
Iz 0 i#j
xy - 0
Thus Dg(Z) = | .. 1| = diag(¥) where diag(Z) € R™*™ is the diagonal matrix whose diagonal
O DRI xn

entries are the entries of Z.
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Consider the data (Z;,y;) for i = 1,...,n where £ € R? and y; € {0,1}. Consider the parameter vector
@ € R? Foreachi € {1,...,n}, define the logistic function p;: R? — R given as
() = —— (an
W) = —————————==—.
P 14 e @'

(a) Find the gradient of the function p; ().

Solution: The gradient is

Op; ([,
35,1 ()
Vpi(W) = :
O i —
o (W)
Here o
api o (fi)je_“’ Ti
w, ) = T2
Wy (1+e-@7)
Thus

Vpi(W) = & -

(1460732

(b) Fori € {1,...,n}, the cross entropy of p € [0, 1] against y; is defined as

H;(p) = —y;log(p) — (1 — yi) log(1 — p).

Find the gradient of the function ¢; () = H;(p;(w)) with respect to .

Solution: The gradient is

Vili (W) =

We can use the chain rule to find each component:

Op;

3wj

Yi

[ o4;
(911)1 (

oL,
L Owgq (

(@)

(i) e”

w)

)

T .

ot . [0H,,

g =- |5 <pi<w>>} [
_ [y _ 1-
(@) 1-p

Yi

(13)}

(1+ e—“7Tfi)21

1—y

(Z3)e

—a &

ST
=—|y(l+e™ ™) -

e—u’;‘Tfi
T o
. e~ W Ti 1
= —(7); %W - (1= yv)m

(1—y)(1+e @' %)

(1/(14e @ %) @' [(14e @ )

|

(i) e~

(14 @T7)?
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Thus
Vli(W) = Z; [pi (W) — yi] - (25)

(c) Define the cross-entropy loss function as the sum of the cross entropy functions over the entire data set:

(@) = 4i(i). (26)
i=1
Find the gradient of the function ¢().
Solution: Using linearity of the derivatives,
V@) =D V(D) 27)
i=1
= F - (@) — i) (28)
i=1
= X" (p() - ). (29)
Here
zf p1(w) y1
X=1:10 p(w) = : ; y=1: (30)
z, P (1) Yn

Notice that this is the same type of gradient as least squares! All it requires is replacing our linear predictors

X with our logistic predictors p(w).
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