
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Discussion 5

1. Product Rule via Chain Rule (10 pts)

Let f, g, h : Rn → R be continuously differentiable functions, such that

f(x⃗) = g(x⃗)h(x⃗), ∀x⃗ ∈ Rn. (1)

Using the vector-valued chain rule, prove that

∇f(x⃗) = h(x⃗)∇g(x⃗) + g(x⃗)∇h(x⃗). (2)

HINT: Try to write f as a composition of two functions.

Solution: We write

f = f1 ◦ f2, where f1(a, b) = a · b and f2(x⃗) =
[

g(x⃗)
h(x⃗)

]
. (3)

Thus

Df(x⃗) = D(f1 ◦ f2)(x⃗) (4)

= [Df1(f2(x⃗))][Df2(x⃗)]. (5)

The individual Jacobians are

Df1(a, b) =
[

∂f1
∂a (a, b) ∂f1

∂b (a, b)
]

(6)

=
[
b a

]
. (7)

Df2(x⃗) =
[

Dg(x⃗)
Dh(x⃗)

]
(8)

=
[

[∇g(x⃗)]⊤

[∇h(x⃗)]⊤

]
. (9)

Thus

Df(x⃗) = [Df1(f2(x⃗))][Df2(x⃗)] (10)

=
[
h(x⃗) g(x⃗)

] [[∇g(x⃗)]⊤

[∇h(x⃗)]⊤

]
(11)

= h(x⃗)[∇g(x⃗)]⊤ + g(x⃗)[∇h(x⃗)]⊤ (12)

∇f(x⃗) = h(x⃗)∇g(x⃗) + g(x⃗)∇h(x⃗). (13)

2. Linear Regression Versus Orthogonal Distance Regression

In this exercise, we explore three regression techniques:

• ordinary least squares (OLS), a formulation for solving linear regression,
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• orthogonal distance regression (ODR), solved using PCA, and

• total least squares (TLS), a generalization of OLS where observation error on both the dependent and
independent variables is assumed

We will examine these regression methods in turn and compare their possible use cases.

In general, regression is used to model the relationship between observed input data and corresponding output
data. In this problem, we consider n input data points a⃗i ∈ Rd and n corresponding output data points bi ∈ R.
Note that the input comprises d real-valued features and the output is a real-valued scalar.

In the case of linear regression (LR), each output bi is assumed to be approximately a linear combination of
the features of the input a⃗i, i.e., bi ≈ a⃗⊤

i x⃗, where x⃗ ∈ Rd is a d–dimensional vector of weights used in the
linear combination. We define the LR computation as finding the x⃗ that minimizes the sum of the squared errors
between the outputs bi and the predicted outputs a⃗⊤

i x⃗ (least-squares), i.e., computing

x⃗⋆
LR = argmin

x⃗

n∑
i=1

(⃗a⊤
i x⃗− bi)2. (14)

Assume for the entirety of this problem that the data are centered, i.e., for all j ∈ {1, . . . , d}, we have∑n
i=1 aij = 0 and

∑n
i=1 bi = 0. This means means that all trendlines we compute (during LR, and later, ODR)

will pass through the origin.

(a) Show that the LR computation can be formulated as a least squares problem of the form

x⃗⋆
LR = argmin

x⃗

∥∥∥Ax⃗− b⃗
∥∥∥2

2
, (15)

where

A =



← a⃗⊤
1 →
...

← a⃗⊤
i →
...

← a⃗⊤
n →


b⃗ =



b1
...
bi

...
bn


. (16)

Solution: We have

∥∥∥Ax⃗− b⃗
∥∥∥2

2
=

∥∥∥∥∥∥∥∥


a⃗⊤
1
...

a⃗⊤
n

 x⃗−


b1
...

bn


∥∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥∥


a⃗⊤
1 x⃗
...

a⃗⊤
n x⃗

−


b1
...

bn


∥∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥∥


a⃗⊤
1 x⃗− b1

...
a⃗⊤

n x⃗− bn


∥∥∥∥∥∥∥∥

2

2

=
n∑

i=1
(⃗a⊤

i x⃗− bi)2.
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(b) We now consider an example LR computation in which d = 1 and n = 3. Let

A =

−1
0
1

 b⃗ =

−1
−1
2

 . (17)

Compute the best fit LR regression line — in this case, a 1–dimensional scalar representing the slope of
the line — x⋆

LR.
Solution: We use the least squares formula x⋆

LR = (A⊤A)−1A⊤b⃗. We have

A⊤A =
[
−1 0 1

]−1
0
1

 = 2 (18)

x⋆
LR = (A⊤A)−1A⊤b⃗ (19)

= 1
2A⊤b⃗ (20)

= 1
2

[
−1 0 1

]−1
−1
2

 (21)

= 3
2 . (22)

(c) Now let

A =

−1
−1
2

 b⃗ =

−1
0
1

 . (23)

Compute the best fit LR regression value x⋆
LR.

Solution:

A⊤A =
[
−1 −1 2

]−1
−1
2

 = 6 (24)

x⋆
LR = (A⊤A)−1A⊤b⃗ (25)

= 1
6A⊤b⃗ (26)

= 1
6

[
−1 −1 2

]−1
0
1

 (27)

= 3
6 = 1

2 . (28)

(d) Note that the computations in (b) and (c) above are performed on the same values; inputs and outputs are
simply switched. Plot these data points on the a–b plane and plot the trendlines corresponding to each x⋆

LR

from (b) and (c) above. Are these trendlines the same? Reason geometrically about why this is the case.
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Figure 1: Illustration of solution of (b) and (c) on the a − b plane.

Solution: See figure 1: in the case where d = 1, the LR in (b) finds the line that goes through the origin
and minimizes the sum of the squares of the vertical distance (y-distance) from the points to the line. The
LR in (c) finds the line that goes through the origin and minimizes the sum of the squares of the horizontal
distance (x-distance).

In some cases, we may not have a preference for which values are designated inputs or outputs and want to avoid
differences in regression result based on our choice. In this case, we can use orthogonal distance regression
(ODR) to compute the regression line that minimizes the sum of the squares of the orthogonal distances of each
data point to the line.
To perform the ODR computation, we define vectors z⃗i, each of which concatenates all inputs and outputs at
observation point i, i.e.,

z⃗i =


↑
a⃗i

↓
bi

 . (29)

The ODR regression line is then the direction x⃗ ∈ Rd+1 such that the sum of squares of the (orthogonal) distances
between the points z⃗i and their projections on the line passing through the origin along direction x⃗ are minimized.

x⃗⋆
ODR = argmin

x⃗:∥x⃗∥2=1

n∑
i=1

∥∥∥z⃗i − projspan(x⃗)(z⃗i)
∥∥∥2

2
(30)

= argmin
x⃗:∥x⃗∥2=1

n∑
i=1

min
vi

∥z⃗i − vix⃗∥2
2 . (31)

(e) Show that the ODR computation can be formulated as the problem of finding the eigenvector corresponding
to the largest eigenvalue of H =

n∑
i=1

z⃗iz⃗
⊤
i , i.e.,

x⃗⋆
ODR = argmax

x⃗:∥x⃗∥2=1
x⃗⊤Hx⃗. (32)
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Solve ODR using the singular value decomposition (SVD) of the “augmented” data matrix:

Z =



← z⃗⊤
1 →
...

← z⃗⊤
i →
...

← z⃗⊤
n →


. (33)

Solution: The inner minimization problem can be solved using projections to obtain,

projspan(x⃗)(z⃗i) = argmin
vi

∥z⃗i − vix⃗∥2
2 = z⃗⊤

i x⃗ (34)

Substituting this into the expression from original definition of ODR we have,
n∑

i=1

∥∥z⃗i − (z⃗⊤
i x⃗)x⃗

∥∥2
2 =

n∑
i=1

z⃗⊤
i z⃗i − 2x⃗⊤z⃗iz⃗

⊤
i x⃗ + x⃗⊤z⃗iz⃗

⊤
i x⃗x⃗⊤x⃗ (35)

=
(

n∑
i=1

z⃗⊤
i z⃗i

)
−

(
n∑

i=1
x⃗⊤z⃗iz⃗

⊤
i x⃗

)
(36)

=
(

n∑
i=1

z⃗⊤
i z⃗i

)
− x⃗⊤

(
n∑

i=1
z⃗iz⃗

⊤
i

)
x⃗ (37)

argmin
x⃗,∥x⃗∥2=1

n∑
i=1

min
vi

∥z⃗i − vix⃗∥2
2 = argmin

x⃗,∥x⃗∥2=1

(
n∑

i=1
z⃗⊤

i z⃗i

)
− x⃗⊤

(
n∑

i=1
z⃗iz⃗

⊤
i

)
x⃗ (38)

= argmax
x⃗,∥x⃗∥2=1

x⃗⊤

(
n∑

i=1
z⃗iz⃗

⊤
i

)
x⃗ (39)

= argmax
x⃗,∥x⃗∥2=1

x⃗⊤Hx⃗ (40)

Note that the second line follows because we enforce in our optimization that x⃗ is unit norm, and thus
x⃗⊤x⃗ = 1. The solution is the eigenvector corresponding to the largest eigenvalue of H:

argmax
x⃗,∥x⃗∥2=1

x⃗⊤Hx⃗ = argmax
x⃗,∥x⃗∥2=1

x⃗⊤UΛU⊤x⃗ (41)

= argmax
x⃗,∥x⃗∥2=1

d+1∑
j=1

(x⃗⊤u⃗i)λi(u⃗⊤
i x⃗) (42)

≤ argmax
x⃗,∥x⃗∥2=1

λ1

d+1∑
j=1

(x⃗⊤u⃗i)(u⃗⊤
i x⃗) (43)

= argmax
x⃗,∥x⃗∥2=1

λ1x⃗⊤UU⊤x⃗ (44)

= argmax
x⃗,∥x⃗∥2=1

λ1
∥∥U⊤x⃗

∥∥2 (45)

= λ1. (46)

We know that u⃗⊤
1 Hu⃗1 = λ1, so u⃗1 ∈ argmaxx⃗,∥x⃗∥2=1 x⃗⊤Hx⃗.

Note that H = Z⊤Z, so u1 is also a right singular vector of Z associated with the largest singular value of
Z.
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(f) Considering d = 1 and n = 3, numerically find the results of the ODR when

A =

−1
0
1

 b⃗ =

−1
−1
2

 . (47)

using the associated Jupyter notebook. Are the results similar if the A and b⃗ values are switched?
Solution: See the associated notebook for the code generating the ODR.

x⃗⋆
ODR ≈

[
0.472
0.882

]
. (48)

In the case that inputs A and b are switched, the notebook returns the same output.

(g) Compare the two techniques. If your goal is to understand a invertible symmetric relationship between the
“Parent height” and the “Child height”, which method would you prefer? See figure 2.
Solution: ODR has the nice property that it treats the “measurement matrix" and the “measurements"
symmetrically — so unlike LR, it does not give you two different answers when you switch the roles of
a⃗ and b⃗, in a simple scalar regression case. So if you really trust your “experiment” i.e. the values in the
matrix A then you can use LR, but if you want to just understand the relationship between the (ai, bi) pairs
in a symmetric way, then ODR will help with that. In the case of figure 2, since you want to be able to just
understand the relationships between the two heights, ODR might be a better choice.

Orthogonal Distance Regression assumes that there is no causal relationship between the two variables, and finds
a relationship between two variables that explains the most variance (hence why we solve it using PCA). It is
often, however, the case that we seek to find a causal relationship while also acknowledging that there is some
measurement error in our dependent variable. Suppose again that we are seeking a relationship of the form
Ax⃗ ≈ y⃗. Instead of finding some x⃗ such that ˆ⃗y = Ax⃗ and ∥y⃗ − ˆ⃗y∥2

2 is minimized (as in OLS), we can seek to
find Ã and ˜⃗y such that ˜⃗y = Ãx⃗ for some x⃗ and

∥A− Ã∥2
F + ∥y⃗ − ˜⃗y∥2

2

is minimized. Total Least Squares (TLS) solves this problem, equivalently expressed below:

min
Ã,ỹ

∥∥ [A y⃗
]
−
[
Ã ˜⃗y

] ∥∥2
F

(49)

s.t.
[
Ã− ˜⃗y

] [ x⃗

−1

]
= 0⃗ (50)

(h) In the case where

A =

−1
0
1

 x⃗ = x ∈ R y⃗ =

−1
−1
2


how would we find

[
Ã ˜⃗y

]
as well as the corresponding x? Solve for the matrix

[
Ã ˜⃗y

]
and x in the

associated jupyter notebook. How do these results compare to OLS and ODR?
HINT: What must the rank of

[
Ã ˜⃗y

]
be? How can we find the best such approximation?

Solution: See associated jupyter notebook.
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Figure 2: Illustration of the correlation between the heights of adults and their parents. In red is the result of linear re-
gression. In black is the result of the orthogonal direction regression. This work has first been done by Galton in 1886.
Using linear regression, Galton remarks that: “It appeared from these experiments that the offspring did not tend to resem-
ble their parents in size, but always to be more mediocre than they – to be smaller than the parents, if the parents were
large; to be larger than the parents, if the parents were small.” Figure comes from https://select-statistics.co.
uk/blog/regression-to-the-mean-as-relevant-today-as-it-was-in-the-1900s/ The original text can be found at
https://www.jstor.org/stable/2841583.
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