1. Convexity of Functions

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is a convex set and if for all $\vec{x}, \vec{y} \in \operatorname{dom}(f)$ and $\theta \in[0,1]$, we have,

$$
\begin{equation*}
f(\theta \vec{x}+(1-\theta) \vec{y}) \leq \theta f(\vec{x})+(1-\theta) f(\vec{y}) . \tag{1}
\end{equation*}
$$

The function f is strictly convex if the inequality is strict.
Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave if $\operatorname{dom}(f)$ is a convex set and if for all $\vec{x}, \vec{y} \in \operatorname{dom}(f)$ and θ with $0 \leq \theta \leq 1$, we have,

$$
\begin{equation*}
f(\theta \vec{x}+(1-\theta) \vec{y}) \geq \theta f(\vec{x})+(1-\theta) f(\vec{y}) . \tag{2}
\end{equation*}
$$

The function f is strictly concave if the inequality is strict.
Property. A function f is concave if and only if $-f$ is convex. An affine function is both convex and concave.
Property: Jensen's inequality. The inequality in Equation (1) is known as Jensen's Inequality. This can be extended to convex combinations of more than one point. If f is convex, and $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k} \in \operatorname{dom}(f)$, and $\theta_{1}, \theta_{2}, \ldots, \theta_{k} \geq 0$ with $\sum_{i=1}^{k} \theta_{i}=1$ then,

$$
\begin{equation*}
f\left(\theta_{1} \vec{x}_{1}+\theta_{2} \vec{x}_{2}+\cdots+\theta_{k} \vec{x}_{k}\right) \leq \theta_{1} f\left(\vec{x}_{1}\right)+\theta_{2} f\left(\vec{x}_{2}\right)+\cdots+\theta_{k} f\left(\vec{x}_{k}\right) . \tag{3}
\end{equation*}
$$

Property: first order condition. Suppose f is differentiable. Then f is convex if and only if $\operatorname{dom}(f)$ is convex and

$$
\begin{equation*}
f(\vec{y}) \geq f(\vec{x})+\nabla f(\vec{x})^{\top}(\vec{y}-\vec{x}) \tag{4}
\end{equation*}
$$

for all $\vec{x}, \vec{y} \in \operatorname{dom}(f)$.
Property: Second order condition. Suppose f is twice differentiable. Then f is convex if and only if, $\operatorname{dom}(f)$ is convex and the Hessian of $f, \nabla^{2} f(\vec{x})$, is positive semi-definite for all $\vec{x} \in \operatorname{dom}(f)$.

(a) Restriction to a line.

Show that a function f is convex if and only if for all $\vec{x} \in \operatorname{dom}(f)$ and all \vec{v}, the function $g: \operatorname{dom}(g) \rightarrow \mathbb{R}$ given by $g(t)=f(\vec{x}+t \vec{v})$ is convex for $\operatorname{dom}(g)=\{t \in \mathbb{R} \mid \vec{x}+t \vec{v} \in \operatorname{dom}(f)\}$.

(b) Non-negative weighted sum.

Show that the non-negative weighted sum of convex functions is convex: i.e. if f_{1}, \ldots, f_{n} are n convex functions from \mathbb{R}^{n} to \mathbb{R} and $w_{1}, \ldots, w_{n} \in \mathbb{R}_{+}$are n positive scalars, then the function:

$$
\begin{equation*}
f=\sum_{i=1}^{n} w_{i} f_{i} \tag{5}
\end{equation*}
$$

is convex. To make the question easier, you can assume that the functions f_{1}, \ldots, f_{n} are twicedifferentiable.

(c) Point-wise maximum.

Show that if f_{1} and f_{2} are convex functions then their pointwise maximum f, defined by

$$
\begin{equation*}
f(\vec{x})=\max \left(f_{1}(\vec{x}), f_{2}(\vec{x})\right), \tag{6}
\end{equation*}
$$

with $\operatorname{dom}(f)=\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$, is also convex.

2. Convexity of Constraint Sets

Let $f_{1}, \ldots, f_{m}, h_{1}, \ldots, h_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be functions. Let $S \subseteq \mathbb{R}^{n}$ be defined as

$$
S \doteq\left\{\begin{array}{l|ll}
\vec{x} \in \mathbb{R}^{n} & \left.\begin{array}{cc}
f_{i}(\vec{x}) \leq 0 & \forall i=1, \ldots, m \\
h_{j}(\vec{x})=0 & \forall j=1, \ldots, p
\end{array}\right\} ~ \tag{7}
\end{array}\right.
$$

Show that if f_{1}, \ldots, f_{m} are convex functions, and h_{1}, \ldots, h_{p} are affine functions, then S is a convex set.

3. Ridge Regression

Prove that the optimal solution to the ridge regression problem:

$$
\begin{equation*}
\min _{\vec{w} \in \mathbb{R}^{p}}\|X \vec{w}-\vec{y}\|_{2}^{2}+\lambda\|\vec{w}\|_{2}^{2} \tag{8}
\end{equation*}
$$

where $X \in \mathbb{R}^{n \times p}, \lambda>0$ and $\vec{y} \in \mathbb{R}^{n}$, is given by:

$$
\begin{equation*}
\vec{w}^{*}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} \vec{y} \tag{9}
\end{equation*}
$$

