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1. Convexity of Functions

Definition. A function f : Rn → R is convex if dom(f) is a convex set and if for all x⃗, y⃗ ∈ dom(f) and
θ ∈ [0, 1], we have,

f(θx⃗ + (1 − θ)y⃗) ≤ θf(x⃗) + (1 − θ)f(y⃗). (1)

The function f is strictly convex if the inequality is strict.

Definition. A function f : Rn → R is concave if dom(f) is a convex set and if for all x⃗, y⃗ ∈ dom(f) and θ with
0 ≤ θ ≤ 1, we have,

f(θx⃗ + (1 − θ)y⃗) ≥ θf(x⃗) + (1 − θ)f(y⃗). (2)

The function f is strictly concave if the inequality is strict.

Property. A function f is concave if and only if −f is convex. An affine function is both convex and concave.

Property: Jensen’s inequality. The inequality in Equation (1) is known as Jensen’s Inequality. This can be
extended to convex combinations of more than one point. If f is convex, and x⃗1, x⃗2, . . . , x⃗k ∈ dom(f), and
θ1, θ2, . . . , θk ≥ 0 with

∑k
i=1 θi = 1 then,

f(θ1x⃗1 + θ2x⃗2 + · · · + θkx⃗k) ≤ θ1f(x⃗1) + θ2f(x⃗2) + · · · + θkf(x⃗k). (3)

Property: first order condition. Suppose f is differentiable. Then f is convex if and only if dom(f) is convex
and

f(y⃗) ≥ f(x⃗) + ∇f(x⃗)⊤(y⃗ − x⃗), (4)

for all x⃗, y⃗ ∈ dom(f).

Property: Second order condition. Suppose f is twice differentiable. Then f is convex if and only if, dom(f) is
convex and the Hessian of f , ∇2f(x⃗), is positive semi-definite for all x⃗ ∈ dom(f).

(a) Restriction to a line.

Show that a function f is convex if and only if for all x⃗ ∈ dom(f) and all v⃗, the function g : dom(g) → R
given by g(t) = f(x⃗ + tv⃗) is convex for dom(g) = {t ∈ R | x⃗ + tv⃗ ∈ dom(f)}.
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(b) Non-negative weighted sum.
Show that the non-negative weighted sum of convex functions is convex: i.e. if f1, . . . , fn are n convex
functions from Rn to R and w1, . . . , wn ∈ R+ are n positive scalars, then the function:

f =
n∑

i=1
wifi (5)

is convex. To make the question easier, you can assume that the functions f1, . . . , fn are twice-
differentiable.

(c) Point-wise maximum.
Show that if f1 and f2 are convex functions then their pointwise maximum f , defined by

f(x⃗) = max(f1(x⃗), f2(x⃗)), (6)

with dom(f) = dom(f1) ∩ dom(f2), is also convex.

2. Convexity of Constraint Sets

Let f1, . . . , fm, h1, . . . , hp : Rn → R be functions. Let S ⊆ Rn be defined as

S
.=

{
x⃗ ∈ Rn

∣∣∣∣∣ fi(x⃗) ≤ 0 ∀i = 1, . . . , m

hj(x⃗) = 0 ∀j = 1, . . . , p

}
. (7)

Show that if f1, . . . , fm are convex functions, and h1, . . . , hp are affine functions, then S is a convex set.
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3. Ridge Regression

Prove that the optimal solution to the ridge regression problem:

min
w⃗∈Rp

∥Xw⃗ − y⃗∥2
2 + λ ∥w⃗∥2

2 , (8)

where X ∈ Rn×p, λ > 0 and y⃗ ∈ Rn, is given by:

w⃗∗ = (X⊤X + λI)−1X⊤y⃗. (9)
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