1. Convexity of Functions

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is a convex set and if for all $\vec{x}, \vec{y} \in \operatorname{dom}(f)$ and $\theta \in[0,1]$, we have,

$$
\begin{equation*}
f(\theta \vec{x}+(1-\theta) \vec{y}) \leq \theta f(\vec{x})+(1-\theta) f(\vec{y}) . \tag{1}
\end{equation*}
$$

The function f is strictly convex if the inequality is strict.
Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave if $\operatorname{dom}(f)$ is a convex set and if for all $\vec{x}, \vec{y} \in \operatorname{dom}(f)$ and θ with $0 \leq \theta \leq 1$, we have,

$$
\begin{equation*}
f(\theta \vec{x}+(1-\theta) \vec{y}) \geq \theta f(\vec{x})+(1-\theta) f(\vec{y}) . \tag{2}
\end{equation*}
$$

The function f is strictly concave if the inequality is strict.
Property. A function f is concave if and only if $-f$ is convex. An affine function is both convex and concave.
Property: Jensen's inequality. The inequality in Equation (1) is known as Jensen's Inequality. This can be extended to convex combinations of more than one point. If f is convex, and $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k} \in \operatorname{dom}(f)$, and $\theta_{1}, \theta_{2}, \ldots, \theta_{k} \geq 0$ with $\sum_{i=1}^{k} \theta_{i}=1$ then,

$$
\begin{equation*}
f\left(\theta_{1} \vec{x}_{1}+\theta_{2} \vec{x}_{2}+\cdots+\theta_{k} \vec{x}_{k}\right) \leq \theta_{1} f\left(\vec{x}_{1}\right)+\theta_{2} f\left(\vec{x}_{2}\right)+\cdots+\theta_{k} f\left(\vec{x}_{k}\right) . \tag{3}
\end{equation*}
$$

Property: first order condition. Suppose f is differentiable. Then f is convex if and only if dom (f) is convex and

$$
\begin{equation*}
f(\vec{y}) \geq f(\vec{x})+\nabla f(\vec{x})^{\top}(\vec{y}-\vec{x}) \tag{4}
\end{equation*}
$$

for all $\vec{x}, \vec{y} \in \operatorname{dom}(f)$.
Property: Second order condition. Suppose f is twice differentiable. Then f is convex if and only if, $\operatorname{dom}(f)$ is convex and the Hessian of $f, \nabla^{2} f(\vec{x})$, is positive semi-definite for all $\vec{x} \in \operatorname{dom}(f)$.

(a) Restriction to a line.

Show that a function f is convex if and only if for $\operatorname{all} \vec{x} \in \operatorname{dom}(f)$ and all \vec{v}, the function $g: \operatorname{dom}(g) \rightarrow \mathbb{R}$ given by $g(t)=f(\vec{x}+t \vec{v})$ is convex for $\operatorname{dom}(g)=\{t \in \mathbb{R} \mid \vec{x}+t \vec{v} \in \operatorname{dom}(f)\}$.
Solution: In the first direction: assume f is convex and consider $\vec{x} \in \operatorname{dom}(f), \vec{v}$ and the function $g: \operatorname{dom}(g) \rightarrow \mathbb{R}$ given by $g(t)=f(\vec{x}+t \vec{v})$ where $\operatorname{dom}(g)=\{t \in \mathbb{R} \mid \vec{x}+t \vec{v} \in \operatorname{dom}(f)\}$.
Because f is convex, $\operatorname{dom}(f)$ is convex, therefore $\operatorname{dom}(g)$ is also convex. For $t_{1}, t_{2} \in \operatorname{dom}(g)$ and $\lambda \in[0,1]:$

$$
\begin{align*}
g\left(\lambda t_{1}+(1-\lambda) t_{2}\right) & =f\left(\vec{x}+\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \vec{v}\right) \tag{5}\\
& =f\left(\lambda\left(\vec{x}+t_{1} \vec{v}\right)+(1-\lambda)\left(\vec{x}+t_{2} \vec{v}\right)\right) \tag{6}\\
& \leq \lambda f\left(\vec{x}+t_{1} \vec{v}\right)+(1-\lambda) f\left(\vec{x}+t_{2} \vec{v}\right) \tag{7}\\
& =\lambda g\left(t_{1}\right)+(1-\lambda) g\left(t_{2}\right) \tag{8}
\end{align*}
$$

Therefore g is convex.

In the other direction: Consider $\vec{x}_{1}, \vec{x}_{2} \in \operatorname{dom}(f)$ and $\lambda \in[0,1]$. Define $g: t \rightarrow f\left(\vec{x}_{2}+t\left(\vec{x}_{1}-\vec{x}_{2}\right)\right) . g$ is convex and $0 \in \operatorname{dom}(g)$ and $1 \in \operatorname{dom}(g)$, so $[0,1] \in \operatorname{dom}(g)$. Therefore $\lambda \vec{x}_{1}+(1-\lambda) \vec{x}_{2} \in \operatorname{dom}(f)$ and $\operatorname{dom}(f)$ is convex.

Because g is convex:

$$
\begin{align*}
g(\lambda 1+(1-\lambda) 0)=g(\lambda) & \leq \lambda g(1)+(1-\lambda) g(0) \tag{9}\\
f\left(\vec{x}_{2}+\lambda\left(\vec{x}_{1}-\vec{x}_{2}\right)\right) & \leq \lambda f\left(\vec{x}_{2}+1\left(\vec{x}_{1}-\vec{x}_{2}\right)\right)+(1-\lambda) f\left(\vec{x}_{2}+0\left(\vec{x}_{1}-\vec{x}_{2}\right)\right) \tag{10}\\
f\left(\lambda \vec{x}_{1}+(1-\lambda) \vec{x}_{2}\right) & \leq \lambda f\left(\vec{x}_{1}\right)+(1-\lambda) f\left(\vec{x}_{2}\right) \tag{11}
\end{align*}
$$

Therefore f is convex.

(b) Non-negative weighted sum.

Show that the non-negative weighted sum of convex functions is convex: i.e. if f_{1}, \ldots, f_{n} are n convex functions from \mathbb{R}^{n} to \mathbb{R} and $w_{1}, \ldots, w_{n} \in \mathbb{R}_{+}$are n positive scalars, then the function:

$$
\begin{equation*}
f=\sum_{i=1}^{n} w_{i} f_{i} \tag{12}
\end{equation*}
$$

is convex. To make the question easier, you can assume that the functions f_{1}, \ldots, f_{n} are twicedifferentiable.
Solution: Check convexity by using the second order condition. First, the weighted sum of twicedifferentiable function is also twice-differentiable:

$$
\begin{align*}
\nabla^{2} f & =\nabla^{2}\left(\sum_{i=1}^{n} w_{i} f_{i}\right) \tag{13}\\
& =\sum_{i=1}^{n} w_{i} \nabla^{2} f_{i} \tag{14}
\end{align*}
$$

Next we check that $\nabla^{2} f$ is PSD.

$$
\begin{align*}
\forall \vec{y}, \forall \vec{x} \quad \vec{y}^{\top}\left(\nabla^{2} f(\vec{x})\right) \vec{y} & =\vec{y}^{\top}\left(\sum_{i=1}^{n} w_{i} \nabla^{2} f_{i}(\vec{x})\right) \vec{y} \tag{15}\\
& =\sum_{i=1}^{n} w_{i} \vec{y}^{\top}\left(\nabla^{2} f_{i}(\vec{x})\right) \vec{y} \tag{16}\\
& \geq 0 \tag{17}
\end{align*}
$$

So $\forall \vec{x}, \nabla^{2} f(\vec{x})$ is PSD, so f is convex.
(c) Point-wise maximum.

Show that if f_{1} and f_{2} are convex functions then their pointwise maximum f, defined by

$$
\begin{equation*}
f(\vec{x})=\max \left(f_{1}(\vec{x}), f_{2}(\vec{x})\right) \tag{18}
\end{equation*}
$$

with $\operatorname{dom}(f)=\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$, is also convex.
Solution: Because f_{1} and f_{2} are convex, then $\operatorname{dom}\left(f_{1}\right)$ and $\operatorname{dom}\left(f_{2}\right)$ are convex sets. Because convexity of sets is preserved under intersection, $\operatorname{dom}(f)=\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$ is also convex.

$$
\begin{equation*}
\operatorname{epi}(f)=\{(\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f), f(\vec{x}) \leq t\} \tag{19}
\end{equation*}
$$

$$
\begin{align*}
& =\left\{(\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f), \max \left(f_{1}(\vec{x}), f_{2}(\vec{x})\right) \leq t\right\} \tag{20}\\
& =\left\{(\vec{x}, t) \mid \vec{x} \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right), f_{1}(\vec{x}) \leq t \text { and } f_{2}(\vec{x}) \leq t\right\} \tag{21}\\
& =\left\{(\vec{x}, t) \mid \vec{x} \in \operatorname{dom}\left(f_{1}\right), f_{1}(\vec{x}) \leq t\right\} \cap\left\{(\vec{x}, t) \mid \vec{x} \in \operatorname{dom}\left(f_{2}\right), f_{2}(\vec{x}) \leq t\right\} \tag{22}\\
& =\operatorname{epi}\left(f_{1}\right) \cap \operatorname{epi}\left(f_{2}\right) \tag{23}
\end{align*}
$$

Because f_{1} and f_{2} are convex, then epi $\left(f_{1}\right)$ and epi $\left(f_{2}\right)$ are convex. Because convexity of sets is preserved under intersection, epi (f) is convex. Because of the equivalence between the convexity of functions and the convexity of their epigraphs, f is convex.

2. Convexity of Constraint Sets

Let $f_{1}, \ldots, f_{m}, h_{1}, \ldots, h_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be functions. Let $S \subseteq \mathbb{R}^{n}$ be defined as

$$
S \doteq\left\{\begin{array}{l|ll}
\vec{x} \in \mathbb{R}^{n} & \left.\begin{array}{cc}
f_{i}(\vec{x}) \leq 0 & \forall i=1, \ldots, m \\
h_{j}(\vec{x})=0 & \forall j=1, \ldots, p
\end{array}\right\} \tag{24}
\end{array}\right.
$$

Show that if f_{1}, \ldots, f_{m} are convex functions, and h_{1}, \ldots, h_{p} are affine functions, then S is a convex set.
Solution: Let $\vec{x}, \vec{y} \in S$ and let $\theta \in[0,1]$. Then for any $i=1, \ldots, m$, we have

$$
\begin{aligned}
f_{i}(\theta \vec{x}+(1-\theta) \vec{y}) & \leq \theta \underbrace{f_{i}(\vec{x})}_{\leq 0}+(1-\theta) \underbrace{f_{i}(\vec{y})}_{\leq 0} \\
& \leq 0
\end{aligned}
$$

And for any $j=1, \ldots, p$, we have

$$
\begin{aligned}
h_{j}(\theta \vec{x}+(1-\theta) \vec{y}) & =\theta \underbrace{h_{j}(\vec{x})}_{=0}+(1-\theta) \underbrace{h(\vec{y})}_{=0} \\
& =0
\end{aligned}
$$

Thus $\theta \vec{x}+(1-\theta) \vec{y} \in S$. Thus S is convex.

3. Ridge Regression

Prove that the optimal solution to the ridge regression problem:

$$
\begin{equation*}
\min _{\vec{w} \in \mathbb{R}^{p}}\|X \vec{w}-\vec{y}\|_{2}^{2}+\lambda\|\vec{w}\|_{2}^{2} \tag{25}
\end{equation*}
$$

where $X \in \mathbb{R}^{n \times p}, \lambda>0$ and $\vec{y} \in \mathbb{R}^{n}$, is given by:

$$
\begin{equation*}
\vec{w}^{*}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} \vec{y} \tag{26}
\end{equation*}
$$

Solution: We begin by taking the gradient of of the objective function

$$
\begin{equation*}
f(\vec{w})=\|X \vec{w}-\vec{y}\|_{2}^{2}+\lambda\|\vec{w}\|_{2}^{2}=\vec{w}^{\top} X^{\top} X \vec{w}-2 \vec{y}^{\top} X \vec{w}+\|\vec{y}\|^{2}+\lambda\|\vec{w}\|^{2} \tag{27}
\end{equation*}
$$

with respect to \vec{w} and setting it to zero, we get:

$$
\begin{equation*}
\nabla f\left(\vec{w}^{*}\right)=2 X^{\top} X \vec{w}^{*}+2 \lambda \vec{w}^{*}-2 X^{\top} \vec{y}=0 \Longrightarrow \vec{w}^{*}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} \vec{y} \tag{28}
\end{equation*}
$$

