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1. Convexity of Functions

Definition. A function f : Rn → R is convex if dom(f) is a convex set and if for all x⃗, y⃗ ∈ dom(f) and
θ ∈ [0, 1], we have,

f(θx⃗ + (1 − θ)y⃗) ≤ θf(x⃗) + (1 − θ)f(y⃗). (1)

The function f is strictly convex if the inequality is strict.

Definition. A function f : Rn → R is concave if dom(f) is a convex set and if for all x⃗, y⃗ ∈ dom(f) and θ with
0 ≤ θ ≤ 1, we have,

f(θx⃗ + (1 − θ)y⃗) ≥ θf(x⃗) + (1 − θ)f(y⃗). (2)

The function f is strictly concave if the inequality is strict.

Property. A function f is concave if and only if −f is convex. An affine function is both convex and concave.

Property: Jensen’s inequality. The inequality in Equation (1) is known as Jensen’s Inequality. This can be
extended to convex combinations of more than one point. If f is convex, and x⃗1, x⃗2, . . . , x⃗k ∈ dom(f), and
θ1, θ2, . . . , θk ≥ 0 with

∑k
i=1 θi = 1 then,

f(θ1x⃗1 + θ2x⃗2 + · · · + θkx⃗k) ≤ θ1f(x⃗1) + θ2f(x⃗2) + · · · + θkf(x⃗k). (3)

Property: first order condition. Suppose f is differentiable. Then f is convex if and only if dom(f) is convex
and

f(y⃗) ≥ f(x⃗) + ∇f(x⃗)⊤(y⃗ − x⃗), (4)

for all x⃗, y⃗ ∈ dom(f).

Property: Second order condition. Suppose f is twice differentiable. Then f is convex if and only if, dom(f) is
convex and the Hessian of f , ∇2f(x⃗), is positive semi-definite for all x⃗ ∈ dom(f).

(a) Restriction to a line.

Show that a function f is convex if and only if for all x⃗ ∈ dom(f) and all v⃗, the function g : dom(g) → R
given by g(t) = f(x⃗ + tv⃗) is convex for dom(g) = {t ∈ R | x⃗ + tv⃗ ∈ dom(f)}.

Solution: In the first direction: assume f is convex and consider x⃗ ∈ dom(f), v⃗ and the function
g : dom(g) → R given by g(t) = f(x⃗ + tv⃗) where dom(g) = {t ∈ R | x⃗ + tv⃗ ∈ dom(f)}.

Because f is convex, dom(f) is convex, therefore dom(g) is also convex. For t1, t2 ∈ dom(g) and
λ ∈ [0, 1]:

g(λt1 + (1 − λ)t2) = f(x⃗ + (λt1 + (1 − λ)t2)v⃗) (5)

= f(λ(x⃗ + t1v⃗) + (1 − λ)(x⃗ + t2v⃗)) (6)

≤ λf(x⃗ + t1v⃗) + (1 − λ)f(x⃗ + t2v⃗) (7)

= λg(t1) + (1 − λ)g(t2) (8)

Therefore g is convex.
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In the other direction: Consider x⃗1, x⃗2 ∈ dom(f) and λ ∈ [0, 1]. Define g : t → f(x⃗2 + t(x⃗1 − x⃗2)). g is
convex and 0 ∈ dom(g) and 1 ∈ dom(g), so [0, 1] ∈ dom(g). Therefore λx⃗1 + (1 − λ)x⃗2 ∈ dom(f) and
dom(f) is convex.

Because g is convex:

g(λ1 + (1 − λ)0) = g(λ) ≤ λg(1) + (1 − λ)g(0) (9)

f(x⃗2 + λ(x⃗1 − x⃗2)) ≤ λf(x⃗2 + 1(x⃗1 − x⃗2)) + (1 − λ)f(x⃗2 + 0(x⃗1 − x⃗2)) (10)

f(λx⃗1 + (1 − λ)x⃗2) ≤ λf(x⃗1) + (1 − λ)f(x⃗2) (11)

Therefore f is convex.

(b) Non-negative weighted sum.

Show that the non-negative weighted sum of convex functions is convex: i.e. if f1, . . . , fn are n convex
functions from Rn to R and w1, . . . , wn ∈ R+ are n positive scalars, then the function:

f =
n∑

i=1
wifi (12)

is convex. To make the question easier, you can assume that the functions f1, . . . , fn are twice-
differentiable.

Solution: Check convexity by using the second order condition. First, the weighted sum of twice-
differentiable function is also twice-differentiable:

∇2f = ∇2

(
n∑

i=1
wifi

)
(13)

=
n∑

i=1
wi∇2fi (linearity of ∇2) (14)

Next we check that ∇2f is PSD.

∀y⃗, ∀x⃗ y⃗⊤(∇2f(x⃗))y⃗ = y⃗⊤(
n∑

i=1
wi∇2fi(x⃗))y⃗ (15)

=
n∑

i=1
wiy⃗

⊤(∇2fi(x⃗))y⃗ (16)

≥ 0 (y⃗⊤(∇2fi(x⃗))y⃗ ≥ 0, because fi is convex) (17)

So ∀x⃗, ∇2f(x⃗) is PSD, so f is convex.

(c) Point-wise maximum.

Show that if f1 and f2 are convex functions then their pointwise maximum f , defined by

f(x⃗) = max(f1(x⃗), f2(x⃗)), (18)

with dom(f) = dom(f1) ∩ dom(f2), is also convex.

Solution: Because f1 and f2 are convex, then dom(f1) and dom(f2) are convex sets. Because convexity
of sets is preserved under intersection, dom(f) = dom(f1) ∩ dom(f2) is also convex.

epi(f) = {(x⃗, t) | x⃗ ∈ dom(f), f(x⃗) ≤ t} (19)
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= {(x⃗, t) | x⃗ ∈ dom(f), max(f1(x⃗), f2(x⃗)) ≤ t} (20)

= {(x⃗, t) | x⃗ ∈ dom(f1) ∩ dom(f2), f1(x⃗) ≤ t and f2(x⃗) ≤ t} (21)

= {(x⃗, t) | x⃗ ∈ dom(f1), f1(x⃗) ≤ t} ∩ {(x⃗, t) | x⃗ ∈ dom(f2), f2(x⃗) ≤ t} (22)

= epi(f1) ∩ epi(f2) (23)

Because f1 and f2 are convex, then epi(f1) and epi(f2) are convex. Because convexity of sets is preserved
under intersection, epi(f) is convex. Because of the equivalence between the convexity of functions and
the convexity of their epigraphs, f is convex.

2. Convexity of Constraint Sets

Let f1, . . . , fm, h1, . . . , hp : Rn → R be functions. Let S ⊆ Rn be defined as

S
.=
{

x⃗ ∈ Rn

∣∣∣∣∣ fi(x⃗) ≤ 0 ∀i = 1, . . . , m

hj(x⃗) = 0 ∀j = 1, . . . , p

}
. (24)

Show that if f1, . . . , fm are convex functions, and h1, . . . , hp are affine functions, then S is a convex set.

Solution: Let x⃗, y⃗ ∈ S and let θ ∈ [0, 1]. Then for any i = 1, . . . , m, we have

fi(θx⃗ + (1 − θ)y⃗) ≤ θ fi(x⃗)︸ ︷︷ ︸
≤0

+(1 − θ) fi(y⃗)︸ ︷︷ ︸
≤0

≤ 0.

And for any j = 1, . . . , p, we have

hj(θx⃗ + (1 − θ)y⃗) = θ hj(x⃗)︸ ︷︷ ︸
=0

+(1 − θ) h(y⃗)︸︷︷︸
=0

= 0.

Thus θx⃗ + (1 − θ)y⃗ ∈ S. Thus S is convex.

3. Ridge Regression

Prove that the optimal solution to the ridge regression problem:

min
w⃗∈Rp

∥Xw⃗ − y⃗∥2
2 + λ ∥w⃗∥2

2 , (25)

where X ∈ Rn×p, λ > 0 and y⃗ ∈ Rn, is given by:

w⃗∗ = (X⊤X + λI)−1X⊤y⃗. (26)

Solution: We begin by taking the gradient of of the objective function

f(w⃗) = ∥Xw⃗ − y⃗∥2
2 + λ ∥w⃗∥2

2 = w⃗⊤X⊤Xw⃗ − 2y⃗⊤Xw⃗ + ∥y⃗∥2 + λ ∥w⃗∥2 (27)

with respect to w⃗ and setting it to zero, we get:

∇f(w⃗∗) = 2X⊤Xw⃗∗ + 2λw⃗∗ − 2X⊤y⃗ = 0 =⇒ w⃗∗ = (X⊤X + λI)−1X⊤y⃗. (28)
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