1. Convexity of Functions

<u>Definition</u>. A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if dom(f) is a convex set and if for all $\vec{x}, \vec{y} \in dom(f)$ and $\theta \in [0, 1]$, we have,

$$f(\theta \vec{x} + (1 - \theta) \vec{y}) \le \theta f(\vec{x}) + (1 - \theta) f(\vec{y}).$$

$$\tag{1}$$

The function f is strictly convex if the inequality is strict.

<u>Definition</u>. A function $f : \mathbb{R}^n \to \mathbb{R}$ is concave if dom(f) is a convex set and if for all $\vec{x}, \vec{y} \in \text{dom}(f)$ and θ with $0 \le \theta \le 1$, we have,

$$f(\theta \vec{x} + (1 - \theta) \vec{y}) \ge \theta f(\vec{x}) + (1 - \theta) f(\vec{y}).$$
⁽²⁾

The function f is strictly concave if the inequality is strict.

Property. A function f is concave if and only if -f is convex. An affine function is both convex and concave.

Property: Jensen's inequality. The inequality in Equation (1) is known as **Jensen's Inequality**. This can be extended to convex combinations of more than one point. If f is convex, and $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k \in \text{dom}(f)$, and $\theta_1, \theta_2, \ldots, \theta_k \ge 0$ with $\sum_{i=1}^k \theta_i = 1$ then,

$$f(\theta_1 \vec{x}_1 + \theta_2 \vec{x}_2 + \dots + \theta_k \vec{x}_k) \le \theta_1 f(\vec{x}_1) + \theta_2 f(\vec{x}_2) + \dots + \theta_k f(\vec{x}_k).$$

$$(3)$$

Property: first order condition. Suppose f is differentiable. Then f is convex if and only if dom(f) is convex and

$$f(\vec{y}) \ge f(\vec{x}) + \nabla f(\vec{x})^{\top} (\vec{y} - \vec{x}), \tag{4}$$

for all $\vec{x}, \vec{y} \in \text{dom}(f)$.

Property: Second order condition. Suppose f is twice differentiable. Then f is convex if and only if, dom(f) is convex and the Hessian of f, $\nabla^2 f(\vec{x})$, is positive semi-definite for all $\vec{x} \in \text{dom}(f)$.

(a) Restriction to a line.

Show that a function f is convex if and only if for all $\vec{x} \in \text{dom}(f)$ and all \vec{v} , the function $g : \text{dom}(g) \to \mathbb{R}$ given by $g(t) = f(\vec{x} + t\vec{v})$ is convex for $\text{dom}(g) = \{t \in \mathbb{R} \mid \vec{x} + t\vec{v} \in \text{dom}(f)\}$.

Solution: In the first direction: assume f is convex and consider $\vec{x} \in \text{dom}(f)$, \vec{v} and the function $g : \text{dom}(g) \to \mathbb{R}$ given by $g(t) = f(\vec{x} + t\vec{v})$ where $\text{dom}(g) = \{t \in \mathbb{R} \mid \vec{x} + t\vec{v} \in \text{dom}(f)\}.$

Because f is convex, dom(f) is convex, therefore dom(g) is also convex. For $t_1, t_2 \in \text{dom}(g)$ and $\lambda \in [0, 1]$:

$$g(\lambda t_1 + (1 - \lambda)t_2) = f(\vec{x} + (\lambda t_1 + (1 - \lambda)t_2)\vec{v})$$
(5)

$$= f(\lambda(\vec{x} + t_1\vec{v}) + (1 - \lambda)(\vec{x} + t_2\vec{v}))$$
(6)

$$\leq \lambda f(\vec{x} + t_1 \vec{v}) + (1 - \lambda) f(\vec{x} + t_2 \vec{v}) \tag{7}$$

$$=\lambda g(t_1) + (1-\lambda)g(t_2) \tag{8}$$

Therefore g is convex.

In the other direction: Consider $\vec{x}_1, \vec{x}_2 \in \text{dom}(f)$ and $\lambda \in [0, 1]$. Define $g: t \to f(\vec{x}_2 + t(\vec{x}_1 - \vec{x}_2))$. g is convex and $0 \in \text{dom}(g)$ and $1 \in \text{dom}(g)$, so $[0, 1] \in \text{dom}(g)$. Therefore $\lambda \vec{x}_1 + (1 - \lambda) \vec{x}_2 \in \text{dom}(f)$ and dom(f) is convex.

Because g is convex:

$$g(\lambda 1 + (1 - \lambda)0) = g(\lambda) \le \lambda g(1) + (1 - \lambda)g(0)$$
(9)

$$f(\vec{x}_2 + \lambda(\vec{x}_1 - \vec{x}_2)) \le \lambda f(\vec{x}_2 + 1(\vec{x}_1 - \vec{x}_2)) + (1 - \lambda)f(\vec{x}_2 + 0(\vec{x}_1 - \vec{x}_2))$$
(10)

$$f(\lambda \vec{x}_1 + (1-\lambda)\vec{x}_2) \le \lambda f(\vec{x}_1) + (1-\lambda)f(\vec{x}_2) \tag{11}$$

Therefore f is convex.

(b) Non-negative weighted sum.

Show that the non-negative weighted sum of convex functions is convex: i.e. if f_1, \ldots, f_n are n convex functions from \mathbb{R}^n to \mathbb{R} and $w_1, \ldots, w_n \in \mathbb{R}_+$ are n positive scalars, then the function:

$$f = \sum_{i=1}^{n} w_i f_i \tag{12}$$

is convex. To make the question easier, you can assume that the functions f_1, \ldots, f_n are twicedifferentiable.

Solution: Check convexity by using the second order condition. First, the weighted sum of twicedifferentiable function is also twice-differentiable:

$$\nabla^2 f = \nabla^2 \left(\sum_{i=1}^n w_i f_i \right) \tag{13}$$

$$=\sum_{i=1}^{n} w_i \nabla^2 f_i \qquad (\text{linearity of } \nabla^2) \qquad (14)$$

Next we check that $\nabla^2 f$ is PSD.

$$\forall \vec{y}, \forall \vec{x} \quad \vec{y}^{\top} (\nabla^2 f(\vec{x})) \vec{y} = \vec{y}^{\top} (\sum_{i=1}^n w_i \nabla^2 f_i(\vec{x})) \vec{y}$$
(15)

$$=\sum_{i=1}^{n} w_i \vec{y}^{\top} (\nabla^2 f_i(\vec{x})) \vec{y}$$
(16)

$$(\vec{y}^{\top}(\nabla^2 f_i(\vec{x}))\vec{y} \ge 0, \text{ because } f_i \text{ is convex})$$
 (17)

So $\forall \vec{x}, \nabla^2 f(\vec{x})$ is PSD, so f is convex.

(c) **Point-wise maximum**.

Show that if f_1 and f_2 are convex functions then their pointwise maximum f, defined by

$$f(\vec{x}) = \max(f_1(\vec{x}), f_2(\vec{x})), \tag{18}$$

with $dom(f) = dom(f_1) \cap dom(f_2)$, is also convex.

 ≥ 0

Solution: Because f_1 and f_2 are convex, then $dom(f_1)$ and $dom(f_2)$ are convex sets. Because convexity of sets is preserved under intersection, $dom(f) = dom(f_1) \cap dom(f_2)$ is also convex.

$$epi(f) = \{ (\vec{x}, t) \mid \vec{x} \in dom(f), f(\vec{x}) \le t \}$$
(19)

$$= \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f), \max(f_1(\vec{x}), f_2(\vec{x})) \le t \}$$
(20)

$$= \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f_1) \cap \operatorname{dom}(f_2), f_1(\vec{x}) \le t \text{ and } f_2(\vec{x}) \le t \}$$
(21)

$$= \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f_1), f_1(\vec{x}) \le t \} \cap \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f_2), f_2(\vec{x}) \le t \}$$
(22)

$$= \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2) \tag{23}$$

Because f_1 and f_2 are convex, then $epi(f_1)$ and $epi(f_2)$ are convex. Because convexity of sets is preserved under intersection, epi(f) is convex. Because of the equivalence between the convexity of functions and the convexity of their epigraphs, f is convex.

2. Convexity of Constraint Sets

Let $f_1, \ldots, f_m, h_1, \ldots, h_p \colon \mathbb{R}^n \to \mathbb{R}$ be functions. Let $S \subseteq \mathbb{R}^n$ be defined as

$$S \doteq \left\{ \vec{x} \in \mathbb{R}^n \middle| \begin{array}{c} f_i(\vec{x}) \le 0 \quad \forall i = 1, \dots, m \\ h_j(\vec{x}) = 0 \quad \forall j = 1, \dots, p \end{array} \right\}.$$
(24)

Show that if f_1, \ldots, f_m are convex functions, and h_1, \ldots, h_p are affine functions, then S is a convex set.

Solution: Let $\vec{x}, \vec{y} \in S$ and let $\theta \in [0, 1]$. Then for any i = 1, ..., m, we have

$$f_i(\theta \vec{x} + (1-\theta)\vec{y}) \le \theta \underbrace{f_i(\vec{x})}_{\le 0} + (1-\theta) \underbrace{f_i(\vec{y})}_{\le 0}$$
$$< 0.$$

And for any $j = 1, \ldots, p$, we have

$$h_j(\theta \vec{x} + (1-\theta)\vec{y}) = \theta \underbrace{h_j(\vec{x})}_{=0} + (1-\theta) \underbrace{h(\vec{y})}_{=0}$$
$$= 0.$$

Thus $\theta \vec{x} + (1 - \theta) \vec{y} \in S$. Thus S is convex.

3. Ridge Regression

Prove that the optimal solution to the ridge regression problem:

$$\min_{\vec{w}\in\mathbb{R}^p} \|X\vec{w} - \vec{y}\|_2^2 + \lambda \|\vec{w}\|_2^2,$$
(25)

where $X \in \mathbb{R}^{n \times p}$, $\lambda > 0$ and $\vec{y} \in \mathbb{R}^{n}$, is given by:

$$\vec{w}^* = (X^\top X + \lambda I)^{-1} X^\top \vec{y}.$$
(26)

Solution: We begin by taking the gradient of of the objective function

$$f(\vec{w}) = \|X\vec{w} - \vec{y}\|_{2}^{2} + \lambda \|\vec{w}\|_{2}^{2} = \vec{w}^{\top}X^{\top}X\vec{w} - 2\vec{y}^{\top}X\vec{w} + \|\vec{y}\|^{2} + \lambda \|\vec{w}\|^{2}$$
(27)

with respect to \vec{w} and setting it to zero, we get:

$$\nabla f(\vec{w}^*) = 2X^{\top}X\vec{w}^* + 2\lambda\vec{w}^* - 2X^{\top}\vec{y} = 0 \implies \vec{w}^* = (X^{\top}X + \lambda I)^{-1}X^{\top}\vec{y}.$$
(28)