1. Gradient Descent with A Wide Matrix (Fall 2022 Midterm)

Consider a matrix $X \in \mathbb{R}^{n \times d}$ with $n<d$ and a vector $\vec{y} \in \mathbb{R}^{n}$, both of which are known and given to you. Suppose X has full row rank.
(a) Consider the following problem:

$$
\begin{equation*}
X \vec{w}=\vec{y} \tag{1}
\end{equation*}
$$

where $\vec{w} \in \mathbb{R}^{d}$ is unknown. How many solutions does 1 have? Justify your answer.
(b) Consider the minimum-norm problem

$$
\begin{equation*}
\vec{w}_{\star}=\underset{\substack{\vec{w} \in \mathbb{R}^{d} \\ X \vec{w}=\vec{y}}}{\operatorname{argmin}}\|\vec{w}\|_{2}^{2} \tag{2}
\end{equation*}
$$

We know that the optimal solution to this problem is $\vec{w}_{\star}=X^{\top}\left(X X^{\top}\right)^{-1} \vec{y}$. Now let $X=U \Sigma V^{\top}=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$ be the SVD of X, where $\Sigma_{1} \in \mathbb{R}^{n \times n}$. Recall that this is possible because $n<d$ and X is full row rank. Prove that \vec{w}_{\star} is given by

$$
\vec{w}_{\star}=V\left[\begin{array}{c}
\Sigma_{1}^{-1} \tag{3}\\
0
\end{array}\right] U^{\top} \vec{y}
$$

(c) Let $\eta>0$, and I be the identity matrix of appropriate dimension. Using the $\operatorname{SVD} X=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$, prove the following identity for all positive integers $i>0$:

$$
\left(I-\eta X^{\top} X\right)^{i}=V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{4}\\
0 & 0
\end{array}\right]\right)^{i} V^{\top}
$$

(d) Recall that $X \in \mathbb{R}^{n \times d}$, and that we can write the SVD of X as $X=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$. We will use gradient descent to solve the minimization problem

$$
\begin{equation*}
\min _{\vec{w} \in \mathbb{R}^{d}} \frac{1}{2}\|X \vec{w}-\vec{y}\|_{2}^{2} \tag{5}
\end{equation*}
$$

with step-size $\eta>0$. Let $\vec{w}_{0}=\overrightarrow{0}$ be the initial state, and \vec{w}_{k} be the $k^{\text {th }}$ iterate of gradient descent. Use the identity:

$$
\left(I-\eta X^{\top} X\right)^{i}=V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{6}\\
0 & 0
\end{array}\right]\right)^{i} V^{\top}
$$

to prove that after k steps, we have

$$
\vec{w}_{k}=\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{7}\\
0 & 0
\end{array}\right]\right)^{i}\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y}
$$

HINT: Remember to set $\vec{w}_{0}=\overrightarrow{0}$.
(e) Now let $0<\eta<\frac{1}{\sigma_{1}^{2}}$, where σ_{1} denotes the maximum singular value of $X=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$. Let \vec{w}_{k} be given as

$$
\vec{w}_{k}=\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{8}\\
0 & 0
\end{array}\right]\right)^{i}\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y}
$$

and let \vec{w}_{\star} be the minimum norm solution given as

$$
\vec{w}_{\star}=V\left[\begin{array}{c}
\Sigma_{1}^{-1} \tag{9}\\
0
\end{array}\right] U^{\top} \vec{y}
$$

Prove that $\lim _{k \rightarrow \infty} \vec{w}_{k}=\vec{w}_{\star}$.
HINT: You may use the following result without proof. When all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have magnitude <1, we have the identity $(I-A)^{-1}=I+A+A^{2}+\ldots$.

2. Convexity and Composition of Functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Define the composition of f with g as $h=f \circ g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $h(\vec{x})=f(g(\vec{x}))$.
(a) Show that if f is convex and non decreasing and g is convex, then h is convex.
(b) Show that there exists f non decreasing and g convex, such that $h=f \circ g$ is not convex.
(c) Show that there exists f convex and g convex such that $h=f \circ g$ is not convex.

