1. Gradient Descent with A Wide Matrix (Fall 2022 Midterm)

Consider a matrix $X \in \mathbb{R}^{n \times d}$ with n < d and a vector $\vec{y} \in \mathbb{R}^n$, both of which are known and given to you. Suppose X has full row rank.

(a) Consider the following problem:

$$X\vec{w} = \vec{y} \tag{1}$$

where $\vec{w} \in \mathbb{R}^d$ is unknown. How many solutions does 1 have? Justify your answer.

(b) Consider the minimum-norm problem

$$\vec{w}_{\star} = \underset{\substack{\vec{w} \in \mathbb{R}^d \\ X \vec{w} = \vec{y}}}{\operatorname{argmin}} \|\vec{w}\|_2^2.$$
(2)

We know that the optimal solution to this problem is $\vec{w}_{\star} = X^{\top} (XX^{\top})^{-1} \vec{y}$. Now let $X = U\Sigma V^{\top} = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$ be the SVD of X, where $\Sigma_1 \in \mathbb{R}^{n \times n}$. Recall that this is possible because n < d and X is full row rank. Prove that \vec{w}_{\star} is given by

$$\vec{w}_{\star} = V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}.$$
(3)

(c) Let $\eta > 0$, and I be the identity matrix of appropriate dimension. Using the SVD $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$, prove the following identity for all positive integers i > 0:

$$(I - \eta X^{\top} X)^{i} = V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}.$$
(4)

(d) Recall that $X \in \mathbb{R}^{n \times d}$, and that we can write the SVD of X as $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^\top$. We will use gradient descent to solve the minimization problem

$$\min_{\vec{w} \in \mathbb{R}^d} \frac{1}{2} \| X \vec{w} - \vec{y} \|_2^2$$
(5)

with step-size $\eta > 0$. Let $\vec{w}_0 = \vec{0}$ be the initial state, and \vec{w}_k be the k^{th} iterate of gradient descent. Use the identity:

$$(I - \eta X^{\top} X)^{i} = V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}.$$
 (6)

to prove that after k steps, we have

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0\\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1\\ 0 \end{bmatrix} U^\top \vec{y}.$$
(7)

HINT: Remember to set $\vec{w}_0 = \vec{0}$ *.*

(e) Now let $0 < \eta < \frac{1}{\sigma_1^2}$, where σ_1 denotes the maximum singular value of $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$. Let \vec{w}_k be given as

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0\\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1\\ 0 \end{bmatrix} U^\top \vec{y}.$$
(8)

and let \vec{w}_{\star} be the minimum norm solution given as

$$\vec{w}_{\star} = V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}.$$
(9)

Prove that $\lim_{k\to\infty} \vec{w}_k = \vec{w}_{\star}$.

HINT: You may use the following result without proof. When all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have magnitude < 1, we have the identity $(I - A)^{-1} = I + A + A^2 + \dots$

2. Convexity and Composition of Functions

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$. Define the composition of f with g as $h = f \circ g : \mathbb{R}^n \to \mathbb{R}$ such that $h(\vec{x}) = f(g(\vec{x}))$.

(a) Show that if f is convex and non decreasing and g is convex, then h is convex.

(b) Show that there exists f non decreasing and g convex, such that $h = f \circ g$ is not convex.

(c) Show that there exists f convex and g convex such that $h = f \circ g$ is not convex.