$$
\begin{equation*}
X \vec{w}=\vec{y} \tag{1}
\end{equation*}
$$

where $\vec{w} \in \mathbb{R}^{d}$ is unknown. How many solutions does 1 have? Justify your answer.
Solution: Since \vec{y} is in the range of X, this implies that there exists \vec{w}_{0} such that $\vec{y}=X \vec{w}_{0}$. Now let \vec{s} be any non-zero vector in the null space of X (which exists since $\operatorname{dim}(\mathcal{N}(X))=d-n>0$), and consider an arbitrary vector $\vec{w}_{\text {new }}=\vec{w}_{0}+t \vec{s}$, where $t \in \mathbb{R}$. Since $X \vec{w}_{\text {new }}=X \vec{w}_{0}=\vec{y}$, we conclude that there are infinitely many solutions.
(b) Consider the minimum-norm problem

$$
\begin{equation*}
\vec{w}_{\star}=\underset{\substack{\vec{w} \in \mathbb{R}^{d} \\ X \vec{w}=\vec{y}}}{\operatorname{argmin}}\|\vec{w}\|_{2}^{2} \tag{2}
\end{equation*}
$$

We know that the optimal solution to this problem is $\vec{w}_{\star}=X^{\top}\left(X X^{\top}\right)^{-1} \vec{y}$. Now let
$X=U \Sigma V^{\top}=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$ be the SVD of X, where $\Sigma_{1} \in \mathbb{R}^{n \times n}$. Recall that this is possible because $n<d$ and X is full row rank. Prove that \vec{w}_{\star} is given by

$$
\vec{w}_{\star}=V\left[\begin{array}{c}
\Sigma_{1}^{-1} \tag{3}\\
0
\end{array}\right] U^{\top} \vec{y}
$$

Solution: By plugging in the SVD of X in the expression of \vec{w}_{\star}, we have

$$
\begin{align*}
\vec{w}_{\star} & =X^{\top}\left(X X^{\top}\right)^{-1} \vec{y} \tag{4}\\
& =V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top}\left(U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right] V^{\top} V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top}\right)^{-1} \vec{y}, \quad \text { (4) } \\
& =V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top}\left(U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right]\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top}\right)^{-1} \vec{y}, \\
& =V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} U\left(\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right]\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right]\right)^{-1} U^{\top} \vec{y}, \\
& =V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right]\left(\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right]\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right]\right)^{-1} U^{\top} \vec{y}, \\
& =V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right]\left(\Sigma_{1}^{2}\right)^{-1} U^{\top} \vec{y}, \\
& =V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] \Sigma_{1}^{-2} U^{\top} \vec{y}, \\
& =V\left[\begin{array}{c}
\Sigma_{1}^{-1} \\
0
\end{array}\right] U^{\top} \vec{y} .
\end{align*}
$$

(c) Let $\eta>0$, and I be the identity matrix of appropriate dimension. Using the SVD $X=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$, prove the following identity for all positive integers $i>0$:

$$
\left(I-\eta X^{\top} X\right)^{i}=V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{6}\\
0 & 0
\end{array}\right]\right)^{i} V^{\top}
$$

Solution: We have

$$
\begin{aligned}
& \left(I-\eta X^{\top} X\right)^{i}=\left(I-\eta\left(U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right] V^{\top}\right)^{\top}\left(U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right] V^{\top}\right)\right)^{i}, \quad \quad(\text { plugged in the SVD of } X) \\
& =\left(I-\eta V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right] V^{\top}\right)^{i}, \quad\left(\text { took the transpose of } U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right] V^{\top}\right) \\
& =\left(I-\eta V\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right] V^{\top}\right)^{i} \text {, } \\
& =\left(I-\eta V\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right] V^{\top}\right)^{i}, \quad \text { (took the matrix product of }\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0
\end{array}\right] \text {) } \\
& =\left(V V^{\top}-\eta V\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right] V^{\top}\right)^{i}, \\
& =\left(V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]\right) V^{\top}\right)^{i}, \quad \text { (combine the diagonal matrices) } \\
& =V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]\right)^{i} V^{\top}, \quad \quad \text { (by applying } V^{\top} V=I \text { repeatedly) }
\end{aligned}
$$

(d) Recall that $X \in \mathbb{R}^{n \times d}$, and that we can write the SVD of X as $X=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$. We will use gradient descent to solve the minimization problem

$$
\begin{equation*}
\min _{\vec{w} \in \mathbb{R}^{d}} \frac{1}{2}\|X \vec{w}-\vec{y}\|_{2}^{2} \tag{7}
\end{equation*}
$$

with step-size $\eta>0$. Let $\vec{w}_{0}=\overrightarrow{0}$ be the initial state, and \vec{w}_{k} be the $k^{\text {th }}$ iterate of gradient descent. Use the identity:

$$
\left(I-\eta X^{\top} X\right)^{i}=V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{8}\\
0 & 0
\end{array}\right]\right)^{i} V^{\top}
$$

to prove that after k steps, we have

$$
\vec{w}_{k}=\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{9}\\
0 & 0
\end{array}\right]\right)^{i}\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y}
$$

HINT: Remember to set $\vec{w}_{0}=\overrightarrow{0}$.
Solution: With $\nabla_{\vec{w}} f(\vec{w})=X^{\top}(X \vec{w}-y)$, the gradient updates are of the form:

$$
\begin{align*}
\vec{w}_{k+1} & =\vec{w}_{k}-\eta \nabla_{\vec{w}} f\left(\vec{w}_{k}\right) \tag{10}\\
& =\left(I-\eta X^{\top} X\right) \vec{w}_{k}+\eta X^{\top} \vec{y} \tag{11}
\end{align*}
$$

$$
\begin{align*}
\Longrightarrow \vec{w}_{k} & =\left(I-\eta X^{\top} X\right)^{k} \vec{w}_{0}+\eta \sum_{i=0}^{k-1}\left(I-\eta X^{\top} X\right)^{i} X^{\top} \vec{y} \tag{12}\\
& =\eta \sum_{i=0}^{k-1}\left(I-\eta X^{\top} X\right)^{i} X^{\top} \vec{y} \tag{13}
\end{align*}
$$

Using the identity given, we have

$$
\begin{align*}
\vec{w}_{k} & =\eta \sum_{i=0}^{k-1}\left(I-\eta X^{\top} X\right)^{i} X^{\top} \vec{y} \tag{14}\\
& =\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]\right)^{i} V^{\top}\left(V \Sigma^{\top} U^{\top}\right) \vec{y} \tag{15}\\
& =\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]\right)^{i} \Sigma^{\top} U^{\top} \vec{y} \tag{16}\\
& =\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]\right)^{i}\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \tag{17}
\end{align*}
$$

(e) Now let $0<\eta<\frac{1}{\sigma_{1}^{2}}$, where σ_{1} denotes the maximum singular value of $X=U\left[\begin{array}{ll}\Sigma_{1} & 0\end{array}\right] V^{\top}$. Let \vec{w}_{k} be given as

$$
\vec{w}_{k}=\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \tag{18}\\
0 & 0
\end{array}\right]\right)^{i}\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y}
$$

and let \vec{w}_{\star} be the minimum norm solution given as

$$
\vec{w}_{\star}=V\left[\begin{array}{c}
\Sigma_{1}^{-1} \tag{19}\\
0
\end{array}\right] U^{\top} \vec{y}
$$

Prove that $\lim _{k \rightarrow \infty} \vec{w}_{k}=\vec{w}_{\star}$.
HINT: You may use the following result without proof. When all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have magnitude <1, we have the identity $(I-A)^{-1}=I+A+A^{2}+\ldots$.
Solution: We start with 9 and simplify, obtaining

$$
\begin{aligned}
\vec{w}_{k} & =\eta \sum_{i=0}^{k-1} V\left(I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]\right)^{i}\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \\
& =\eta \sum_{i=0}^{k-1} V\left[\begin{array}{cc}
I-\eta \Sigma_{1}^{2} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \\
& =\eta \sum_{i=0}^{k-1} V\left[\begin{array}{cc}
\left(I-\eta \Sigma_{1}^{2}\right)^{i} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
\Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \\
& =\eta \sum_{i=0}^{k-1} V\left[\begin{array}{c}
\left(I-\eta \Sigma_{1}^{2}\right)^{i} \Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \\
& =\eta V\left\{\sum_{i=0}^{k-1}\left[\begin{array}{c}
\left(I-\eta \Sigma_{1}^{2}\right)^{i} \Sigma_{1} \\
0
\end{array}\right]\right\} U^{\top} \vec{y} \\
& =\eta V\left[\begin{array}{c}
\sum_{i=0}^{k-1}\left(I-\eta \Sigma_{1}^{2}\right)^{i} \Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} .
\end{aligned}
$$

Taking limits, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \vec{w}_{k} & =\eta V\left[\begin{array}{c}
\sum_{i=0}^{\infty}\left(I-\eta \Sigma_{1}^{2}\right)^{i} \Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \\
& \left.=\eta V\left[\begin{array}{c}
\left(I-\left(I-\eta \Sigma_{1}^{2}\right)\right)^{-1} \Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y}, \quad \quad \text { (applied the identity in the hint on } I-\eta \Sigma_{1}^{2}\right) \\
& =\eta V\left[\begin{array}{c}
\left(\eta \Sigma_{1}^{2}\right)^{-1} \Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y}, \\
& =\eta V\left[\begin{array}{c}
\frac{1}{\eta} \Sigma_{1}^{-2} \Sigma_{1} \\
0
\end{array}\right] U^{\top} \vec{y} \\
& =V\left[\begin{array}{c}
\Sigma_{1}^{-1} \\
0
\end{array}\right] U^{\top} \vec{y} \text { is a square matrix and invertible) }
\end{aligned}
$$

as desired. Here the infinite sum is evaluated as in the hint because the eigenvalues of $I-\eta \Sigma_{1}^{2}$ are all in the interval $(0,1) \subseteq(-1,1)$. Indeed, the eigenvalues of $I-\eta \Sigma_{1}^{2}$ are $1-\eta \sigma_{i}^{2}$, where σ_{i} are the entries of Σ_{1} and thus the nonzero singular values of X. Since $\sigma_{i}>0$, we know $1-\eta \sigma_{i}^{2}<1$. Now, since $\eta<\frac{1}{\sigma_{1}^{2}}$, we have $1-\eta \sigma_{i}^{2}>1-\frac{\sigma_{i}^{2}}{\sigma_{1}^{2}} \geq 0$. Thus the eigenvalues of $I-\eta \Sigma_{1}^{2}$ are contained in $(-1,1)$ and the hint applies.
A common error, is to apply the hint directly on $\left(I-\eta\left[\begin{array}{cc}\Sigma_{1}^{2} & 0 \\ 0 & 0\end{array}\right]\right)$. Note that the eigenvalues of

$$
I-\eta\left[\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I-\eta \Sigma_{1}^{2} & 0 \\
0 & I
\end{array}\right]
$$

are in the interval $(0,1]$, which breaks the condition we made on the A matrix described in the hint, all eigenvalues of A having magnitude strictly <1.

2. Convexity and Composition of Functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Define the composition of f with g as $h=f \circ g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $h(\vec{x})=f(g(\vec{x}))$.
(a) Show that if f is convex and non decreasing and g is convex, then h is convex.

Solution:

$$
\begin{align*}
h(\lambda \vec{x}+(1-\lambda) \vec{y}) & =f(g(\lambda \vec{x}+(1-\lambda) \vec{y})) & & \tag{20}\\
& \leq f(\lambda g(\vec{x})+(1-\lambda)(g(\vec{y}))) & & (g \text { convex and } f \text { nondecreasing }) \tag{21}\\
& \leq \lambda f(g(\vec{x}))+(1-\lambda) f(g(\vec{y})) & & (f \text { convex }) \tag{22}\\
& =\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) & & \tag{23}
\end{align*}
$$

So h is convex.
(b) Show that there exists f non decreasing and g convex, such that $h=f \circ g$ is not convex.

Solution: Take $n=1, f(x)=\log (x)$ and $g(x)=x$. Then $h(x)=\log (x)$ is not convex.
(c) Show that there exists f convex and g convex such that $h=f \circ g$ is not convex.

Solution: Take $n=1, f(x)=-x$ and $g(x)=x^{2}$, then $h(x)=-x^{2}$ is not convex.

