
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Discussion 7

1. Gradient Descent with A Wide Matrix (Fall 2022 Midterm)

Consider a matrix X ∈ Rn×d with n < d and a vector ~y ∈ Rn, both of which are known and given to you.
Suppose X has full row rank.

(a) Consider the following problem:
X ~w = ~y (1)

where ~w ∈ Rd is unknown. How many solutions does 1 have? Justify your answer.

Solution: Since ~y is in the range of X , this implies that there exists ~w0 such that ~y = X ~w0. Now let ~s be
any non-zero vector in the null space of X (which exists since dim(N (X)) = d − n > 0), and consider
an arbitrary vector ~wnew = ~w0 + t~s, where t ∈ R. Since X ~wnew = X ~w0 = ~y, we conclude that there are
infinitely many solutions.

(b) Consider the minimum-norm problem

~w? = argmin
~w∈Rd

X ~w=~y

‖~w‖2
2 . (2)

We know that the optimal solution to this problem is ~w? = X>(XX>)−1~y. Now let
X = UΣV > = U

[
Σ1 0

]
V > be the SVD of X , where Σ1 ∈ Rn×n. Recall that this is possible because

n < d and X is full row rank. Prove that ~w? is given by

~w? = V

[
Σ−1

1

0

]
U>~y. (3)

Solution: By plugging in the SVD of X in the expression of ~w?, we have

~w? = X>(XX>)−1~y (4)

= V

[
Σ1

0

]
U>

(
U
[
Σ1 0

]
V >V

[
Σ1

0

]
U>

)−1

~y, (plugged in the SVD of X)

= V

[
Σ1

0

]
U>

(
U
[
Σ1 0

] [Σ1

0

]
U>

)−1

~y, (by V >V = I)

= V

[
Σ1

0

]
U>U

([
Σ1 0

] [Σ1

0

])−1

U>~y, (by U−1 = U>)

= V

[
Σ1

0

]([
Σ1 0

] [Σ1

0

])−1

U>~y, (by U>U = I)

= V

[
Σ1

0

] (
Σ2

1
)−1

U>~y, (took the matrix product of
[
Σ1 0

] [Σ1

0

]
)

= V

[
Σ1

0

]
Σ−2

1 U>~y, (Σ1 is a square matrix and invertible)

= V

[
Σ−1

1

0

]
U>~y. (5)
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(c) Let η > 0, and I be the identity matrix of appropriate dimension. Using the SVD X = U
[
Σ1 0

]
V >,

prove the following identity for all positive integers i > 0:

(I − ηX>X)i = V

(
I − η

[
Σ2

1 0
0 0

])i

V >. (6)

Solution: We have

(I − ηX>X)i =
(

I − η(U
[
Σ1 0

]
V >)>(U

[
Σ1 0

]
V >)

)i

, (plugged in the SVD of X)

=
(

I − ηV

[
Σ1

0

]
U>U

[
Σ1 0

]
V >

)i

, (took the transpose of U
[
Σ1 0

]
V >)

=
(

I − ηV

[
Σ1

0

] [
Σ1 0

]
V >

)i

, (by U>U = I)

=
(

I − ηV

[
Σ2

1 0
0 0

]
V >

)i

, (took the matrix product of

[
Σ1

0

] [
Σ1 0

]
)

=
(

V V > − ηV

[
Σ2

1 0
0 0

]
V >

)i

, (by I = V V >)

=
(

V

(
I − η

[
Σ2

1 0
0 0

])
V >

)i

, (combine the diagonal matrices)

= V

(
I − η

[
Σ2

1 0
0 0

])i

V >, (by applying V >V = I repeatedly)

(d) Recall that X ∈ Rn×d, and that we can write the SVD of X as X = U
[
Σ1 0

]
V >. We will use gradient

descent to solve the minimization problem

min
~w∈Rd

1
2 ‖X ~w − ~y‖2

2 (7)

with step-size η > 0. Let ~w0 = ~0 be the initial state, and ~wk be the kth iterate of gradient descent. Use the
identity:

(I − ηX>X)i = V

(
I − η

[
Σ2

1 0
0 0

])i

V >. (8)

to prove that after k steps, we have

~wk = η

k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U>~y. (9)

HINT: Remember to set ~w0 = ~0.

Solution: With ∇~wf(~w) = X>(X ~w − y), the gradient updates are of the form:

~wk+1 = ~wk − η∇~wf(~wk) (10)

= (I − ηX>X)~wk + ηX>~y (11)
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=⇒ ~wk = (I − ηX>X)k ~w0 + η

k−1∑
i=0

(I − ηX>X)iX>~y (12)

= η

k−1∑
i=0

(I − ηX>X)iX>~y. (13)

Using the identity given, we have

~wk = η

k−1∑
i=0

(I − ηX>X)iX>~y (14)

= η

k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i

V > (V Σ>U>) ~y (15)

= η

k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i

Σ>U>~y (16)

= η

k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U>~y. (17)

(e) Now let 0 < η < 1
σ2

1
, where σ1 denotes the maximum singular value of X = U

[
Σ1 0

]
V >. Let ~wk be

given as

~wk = η

k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U>~y. (18)

and let ~w? be the minimum norm solution given as

~w? = V

[
Σ−1

1

0

]
U>~y. (19)

Prove that limk→∞ ~wk = ~w?.

HINT: You may use the following result without proof. When all eigenvalues of A ∈ Rn×n have magnitude
< 1, we have the identity (I − A)−1 = I + A + A2 + . . ..

Solution: We start with 9 and simplify, obtaining

~wk = η

k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U>~y

= η

k−1∑
i=0

V

[
I − ηΣ2

1 0
0 I

]i [
Σ1

0

]
U>~y

= η

k−1∑
i=0

V

[
(I − ηΣ2

1)i 0
0 I

][
Σ1

0

]
U>~y

= η

k−1∑
i=0

V

[
(I − ηΣ2

1)iΣ1

0

]
U>~y

= ηV

{
k−1∑
i=0

[
(I − ηΣ2

1)iΣ1

0

]}
U>~y

= ηV

[∑k−1
i=0 (I − ηΣ2

1)iΣ1

0

]
U>~y.
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Taking limits, we have

lim
k→∞

~wk = ηV

[∑∞
i=0(I − ηΣ2

1)iΣ1

0

]
U>~y

= ηV

[
(I − (I − ηΣ2

1))−1Σ1

0

]
U>~y, (applied the identity in the hint on I − ηΣ2

1)

= ηV

[
(ηΣ2

1)−1Σ1

0

]
U>~y, (Σ2

1 is a square matrix and invertible)

= ηV

[
1
η Σ−2

1 Σ1

0

]
U>~y

= V

[
Σ−1

1

0

]
U>~y

as desired. Here the infinite sum is evaluated as in the hint because the eigenvalues of I − ηΣ2
1 are all in

the interval (0, 1) ⊆ (−1, 1). Indeed, the eigenvalues of I − ηΣ2
1 are 1 − ησ2

i , where σi are the entries of
Σ1 and thus the nonzero singular values of X . Since σi > 0, we know 1 − ησ2

i < 1. Now, since η < 1
σ2

1
,

we have 1 − ησ2
i > 1 − σ2

i

σ2
1

≥ 0. Thus the eigenvalues of I − ηΣ2
1 are contained in (−1, 1) and the hint

applies.

A common error, is to apply the hint directly on

(
I − η

[
Σ2

1 0
0 0

])
. Note that the eigenvalues of

I − η

[
Σ2

1 0
0 0

]
=
[

I − ηΣ2
1 0

0 I

]
are in the interval (0, 1], which breaks the condition we made on the A matrix described in the hint, all
eigenvalues of A having magnitude strictly < 1.

2. Convexity and Composition of Functions

Let f : R → R and g : Rn → R. Define the composition of f with g as h = f ◦ g : Rn → R such that
h(~x) = f(g(~x)).

(a) Show that if f is convex and non decreasing and g is convex, then h is convex.

Solution:

h(λ~x + (1 − λ)~y) = f(g(λ~x + (1 − λ)~y)) (20)

≤ f(λg(~x) + (1 − λ)(g(~y))) (g convex and f nondecreasing) (21)

≤ λf(g(~x)) + (1 − λ)f(g(~y)) (f convex) (22)

= λh(~x) + (1 − λ)h(~y) (23)

So h is convex.

(b) Show that there exists f non decreasing and g convex, such that h = f ◦ g is not convex.

Solution: Take n = 1, f(x) = log(x) and g(x) = x. Then h(x) = log(x) is not convex.

(c) Show that there exists f convex and g convex such that h = f ◦ g is not convex.

Solution: Take n = 1, f(x) = −x and g(x) = x2, then h(x) = −x2 is not convex.
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