1. Gradient Descent with A Wide Matrix (Fall 2022 Midterm)

Consider a matrix $X \in \mathbb{R}^{n \times d}$ with n < d and a vector $\vec{y} \in \mathbb{R}^n$, both of which are known and given to you. Suppose X has full row rank.

(a) Consider the following problem:

$$X\vec{w} = \vec{y} \tag{1}$$

where $\vec{w} \in \mathbb{R}^d$ is unknown. How many solutions does 1 have? Justify your answer.

Solution: Since \vec{y} is in the range of X, this implies that there exists \vec{w}_0 such that $\vec{y} = X\vec{w}_0$. Now let \vec{s} be any non-zero vector in the null space of X (which exists since $\dim(\mathcal{N}(X)) = d - n > 0$), and consider an arbitrary vector $\vec{w}_{new} = \vec{w}_0 + t\vec{s}$, where $t \in \mathbb{R}$. Since $X\vec{w}_{new} = X\vec{w}_0 = \vec{y}$, we conclude that there are infinitely many solutions.

(b) Consider the minimum-norm problem

$$\vec{w}_{\star} = \underset{\substack{\vec{w} \in \mathbb{R}^d \\ X \vec{v} = \vec{u}}}{\operatorname{argmin}} \|\vec{w}\|_2^2.$$
⁽²⁾

We know that the optimal solution to this problem is $\vec{w}_{\star} = X^{\top} (XX^{\top})^{-1} \vec{y}$. Now let $X = U\Sigma V^{\top} = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$ be the SVD of X, where $\Sigma_1 \in \mathbb{R}^{n \times n}$. Recall that this is possible because n < d and X is full row rank. Prove that \vec{w}_{\star} is given by

$$\vec{w}_{\star} = V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}.$$
(3)

Solution: By plugging in the SVD of X in the expression of \vec{w}_{\star} , we have

$$\vec{w}_{\star} = X^{\top} (XX^{\top})^{-1} \vec{y} \tag{4}$$

$$= V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \left(U \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} V^{\top} V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \right)^{-1} \vec{y}, \qquad \text{(plugged in the SVD of } X)$$
$$= V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \left(U \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \right)^{-1} \vec{y}, \qquad \text{(by } V^{\top} V = I)$$

$$= V \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} U^{\top} U \left(\begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} \right)^{-1} U^{\top} \vec{y}, \qquad (by \ U^{-1} = U^{\top})$$
$$= V \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} \right)^{-1} U^{\top} \vec{y}, \qquad (by \ U^{\top} U = I)$$

$$= V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} \left(\begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} \right)^{-1} U^{\top} \vec{y}, \qquad \text{(by } U^{\top} U = I)$$
$$= V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} \left(\Sigma_{1}^{2} \right)^{-1} U^{\top} \vec{y}, \qquad \text{(took the matrix product of } \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix})$$
$$= V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} \Sigma_{1}^{-2} U^{\top} \vec{y}, \qquad (\Sigma_{1} \text{ is a square matrix and invertible})$$

 $(\Sigma_1 \text{ is a square matrix and invertible})$

$$= V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}.$$
 (5)

(c) Let $\eta > 0$, and I be the identity matrix of appropriate dimension. Using the SVD $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$, prove the following identity for all positive integers i > 0:

$$(I - \eta X^{\top} X)^{i} = V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0\\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}.$$
 (6)

Solution: We have

$$(I - \eta X^{\top} X)^{i} = \left(I - \eta (U \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} V^{\top})^{\top} (U \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} V^{\top}) \right)^{i}, \qquad \text{(plugged in the SVD of } X)$$

$$= \left(I - \eta V \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} U \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} V^{\top} \right)^{i}, \qquad \text{(took the transpose of } U \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix} V^{\top})$$

$$= \left(I - \eta V \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} V^{\top} \right)^{i}, \qquad \text{(by } U^{\top} U = I)$$

$$= \left(I - \eta V \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} V^{\top} \right)^{i}, \qquad \text{(took the matrix product of } \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} \begin{bmatrix} \Sigma_{1} & 0 \end{bmatrix})$$

$$= \left(VV^{\top} - \eta V \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} V^{\top} \right)^{i}, \qquad \text{(by } I = VV^{\top})$$

$$= \left(V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right) V^{\top} \right)^{i}, \qquad \text{(combine the diagonal matrices)}$$

$$= V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}, \qquad \text{(by applying } V^{\top} V = I \text{ repeatedly)}$$

(d) Recall that $X \in \mathbb{R}^{n \times d}$, and that we can write the SVD of X as $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$. We will use gradient descent to solve the minimization problem

$$\min_{\vec{w} \in \mathbb{R}^d} \frac{1}{2} \| X \vec{w} - \vec{y} \|_2^2 \tag{7}$$

with step-size $\eta > 0$. Let $\vec{w}_0 = \vec{0}$ be the initial state, and \vec{w}_k be the k^{th} iterate of gradient descent. Use the identity:

$$(I - \eta X^{\top} X)^{i} = V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0\\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}.$$
(8)

to prove that after k steps, we have

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0\\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1\\ 0 \end{bmatrix} U^\top \vec{y}.$$
(9)

HINT: Remember to set $\vec{w}_0 = \vec{0}$ *.*

Solution: With $\nabla_{\vec{w}} f(\vec{w}) = X^{\top} (X\vec{w} - y)$, the gradient updates are of the form:

$$\vec{w}_{k+1} = \vec{w}_k - \eta \nabla_{\vec{w}} f(\vec{w}_k) \tag{10}$$

$$= (I - \eta X^{\top} X) \vec{w}_k + \eta X^{\top} \vec{y}$$
(11)

2

$$\implies \vec{w}_k = (I - \eta X^{\top} X)^k \vec{w}_0 + \eta \sum_{i=0}^{k-1} (I - \eta X^{\top} X)^i X^{\top} \vec{y}$$
(12)

$$= \eta \sum_{i=0}^{k-1} (I - \eta X^{\top} X)^{i} X^{\top} \vec{y}.$$
 (13)

Using the identity given, we have

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} (I - \eta X^\top X)^i X^\top \vec{y}$$
(14)

$$= \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} \right)^i V^\top \left(V \Sigma^\top U^\top \right) \vec{y}$$
(15)

$$= \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0\\ 0 & 0 \end{bmatrix} \right)^i \Sigma^\top U^\top \vec{y}$$
(16)

$$= \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} U^\top \vec{y}.$$
(17)

(e) Now let $0 < \eta < \frac{1}{\sigma_1^2}$, where σ_1 denotes the maximum singular value of $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$. Let \vec{w}_k be given as

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0\\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1\\ 0 \end{bmatrix} U^\top \vec{y}.$$
(18)

and let \vec{w}_{\star} be the minimum norm solution given as

$$\vec{w}_{\star} = V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}.$$
(19)

Prove that $\lim_{k\to\infty} \vec{w}_k = \vec{w}_{\star}$.

HINT: You may use the following result without proof. When all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have magnitude < 1, we have the identity $(I - A)^{-1} = I + A + A^2 + \dots$

Solution: We start with 9 and simplify, obtaining

$$\begin{split} \vec{w}_{k} &= \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{i} \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \vec{y} \\ &= \eta \sum_{i=0}^{k-1} V \begin{bmatrix} I - \eta \Sigma_{1}^{2} & 0 \\ 0 & I \end{bmatrix}^{i} \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \vec{y} \\ &= \eta \sum_{i=0}^{k-1} V \begin{bmatrix} (I - \eta \Sigma_{1}^{2})^{i} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \vec{y} \\ &= \eta \sum_{i=0}^{k-1} V \begin{bmatrix} (I - \eta \Sigma_{1}^{2})^{i} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \vec{y} \\ &= \eta V \left\{ \sum_{i=0}^{k-1} \begin{bmatrix} (I - \eta \Sigma_{1}^{2})^{i} \Sigma_{1} \\ 0 \end{bmatrix} \right\} U^{\top} \vec{y} \\ &= \eta V \left\{ \sum_{i=0}^{k-1} (I - \eta \Sigma_{1}^{2})^{i} \Sigma_{1} \\ 0 \end{bmatrix} U^{\top} \vec{y}. \end{split}$$

Taking limits, we have

$$\lim_{k \to \infty} \vec{w}_k = \eta V \begin{bmatrix} \sum_{i=0}^{\infty} (I - \eta \Sigma_1^2)^i \Sigma_1 \\ 0 \end{bmatrix} U^{\top} \vec{y}$$

$$= \eta V \begin{bmatrix} (I - (I - \eta \Sigma_1^2))^{-1} \Sigma_1 \\ 0 \end{bmatrix} U^{\top} \vec{y}, \qquad \text{(applied the identity in the hint on } I - \eta \Sigma_1^2 \text{)}$$

$$= \eta V \begin{bmatrix} (\eta \Sigma_1^2)^{-1} \Sigma_1 \\ 0 \end{bmatrix} U^{\top} \vec{y}, \qquad (\Sigma_1^2 \text{ is a square matrix and invertible})$$

$$= \eta V \begin{bmatrix} \frac{1}{\eta} \Sigma_1^{-2} \Sigma_1 \\ 0 \end{bmatrix} U^{\top} \vec{y}$$

$$= V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}$$

as desired. Here the infinite sum is evaluated as in the hint because the eigenvalues of $I - \eta \Sigma_1^2$ are all in the interval $(0,1) \subseteq (-1,1)$. Indeed, the eigenvalues of $I - \eta \Sigma_1^2$ are $1 - \eta \sigma_i^2$, where σ_i are the entries of Σ_1 and thus the nonzero singular values of X. Since $\sigma_i > 0$, we know $1 - \eta \sigma_i^2 < 1$. Now, since $\eta < \frac{1}{\sigma_1^2}$, we have $1 - \eta \sigma_i^2 > 1 - \frac{\sigma_i^2}{\sigma_1^2} \ge 0$. Thus the eigenvalues of $I - \eta \Sigma_1^2$ are contained in (-1, 1) and the hint applies.

A common error, is to apply the hint directly on
$$\begin{pmatrix} I - \eta \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$$
. Note that the eigenvalues of
$$I - \eta \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I - \eta \Sigma_1^2 & 0 \\ 0 & I \end{bmatrix}$$

are in the interval (0,1], which breaks the condition we made on the A matrix described in the hint, all eigenvalues of A having magnitude strictly < 1.

2. Convexity and Composition of Functions

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$. Define the composition of f with g as $h = f \circ g : \mathbb{R}^n \to \mathbb{R}$ such that $h(\vec{x}) = f(g(\vec{x}))$.

(a) Show that if f is convex and non decreasing and g is convex, then h is convex.

Solution:

$$h(\lambda \vec{x} + (1 - \lambda)\vec{y}) = f(g(\lambda \vec{x} + (1 - \lambda)\vec{y}))$$
(20)

$$\leq f(\lambda g(\vec{x}) + (1 - \lambda)(g(\vec{y}))) \qquad (g \text{ convex and } f \text{ nondecreasing}) \qquad (21)$$

$$\leq \lambda f(g(\vec{x})) + (1 - \lambda) f(g(\vec{y})) \qquad (f \text{ convex})$$
(22)

$$= \lambda h(\vec{x}) + (1 - \lambda)h(\vec{y}) \tag{23}$$

So h is convex.

- (b) Show that there exists f non decreasing and g convex, such that $h = f \circ g$ is not convex. Solution: Take n = 1, $f(x) = \log(x)$ and g(x) = x. Then $h(x) = \log(x)$ is not convex.
- (c) Show that there exists f convex and g convex such that $h = f \circ g$ is not convex. Solution: Take n = 1, f(x) = -x and $g(x) = x^2$, then $h(x) = -x^2$ is not convex.