1. Simple Constrained Optimization Problem

Consider the optimization problem

$$
\begin{array}{rl}
\min _{x_{1}, x_{2} \in \mathbb{R}} & f\left(x_{1}, x_{2}\right) \\
\text { s.t. } & 2 x_{1}+x_{2} \geq 1 \\
& x_{1}+3 x_{2} \geq 1 \\
& x_{1} \geq 0, x_{2} \geq 0 \tag{4}
\end{array}
$$

(a) Make a sketch of the feasible set.

For each of the following objective functions, give the optimal set or the optimal value.
(b) $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$.
(c) $f\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}$.
(d) $f\left(x_{1}, x_{2}\right)=x_{1}$
(e) $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$
(f) $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+9 x_{2}^{2}$

2. Simple Constrained Optimization Problem with Duality

Consider the optimization problem

$$
\begin{array}{rl}
\min _{x_{1}, x_{2} \in \mathbb{R}} & f\left(x_{1}, x_{2}\right) \\
\text { s.t. } & 2 x_{1}+x_{2} \geq 1 \\
& x_{1}+3 x_{2} \geq 1 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 \tag{9}
\end{array}
$$

(a) Express the Lagragian of the problem $\mathcal{L}\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$.
(b) Show that \mathcal{L} is concave in $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$.
(c) Express the dual function of the problem, and show that it is concave.
(d) Assume f is convex. Show that \mathcal{L} is convex in $\left(x_{1}, x_{2}\right)$.
(e) Denoting $\mathcal{X}=\left\{\left(x_{1}, x_{2}\right) \mid 2 x_{1}+x_{2} \geq 1, x_{1}+3 x_{2} \geq 1, x_{1} \geq 0, x_{2} \geq 0\right\}$, show that

$$
\max _{\lambda_{1} \geq 0, \lambda_{2} \geq 0, \lambda_{3} \geq 0, \lambda_{4} \geq 0} \mathcal{L}\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)= \begin{cases}f\left(x_{1}, x_{2}\right) & \text { if }\left(x_{1}, x_{2}\right) \in \mathcal{X} \tag{10}\\ +\infty & \text { otherwise }\end{cases}
$$

(f) Conclude that $\min _{\left(x_{1}, x_{2}\right) \in \mathcal{X}} \max _{\lambda_{1} \geq 0, \lambda_{2} \geq 0, \lambda_{3} \geq 0, \lambda_{4} \geq 0} \mathcal{L}\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=\min _{\left(x_{1}, x_{2}\right) \in \mathcal{X}} f\left(x_{1}, x_{2}\right)$.
(g) Assuming f is convex, formulate the first order condition on \mathcal{L} (i.e., $\nabla_{x_{1}, x_{2}} \mathcal{L}\left(x_{1}^{\star}, x_{2}^{\star}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{5}\right)=0$) as a function of ∇f and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} to solve:

$$
\begin{equation*}
\min _{x_{1}, x_{2}} \mathcal{L}\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \tag{11}
\end{equation*}
$$

