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1. An optimization problem

Consider the primal optimization problem,

p⋆ = min
x∈R2

1
2x2

1 + 1
2x2

2 (1)

s.t. x1 ≥ 0 (2)

x1 + x2 ≥ 2. (3)

First we solve the primal problem directly.

(a) Sketch the feasible region and argue that x⋆ = (1, 1) and p⋆ = 1.

Solution: The feasible region is shown in Figure 1 as the green shaded region.

The level curves for the function are concentric circles centered around the origin and the objective value
increases as we go away from the origin. Thus the optimal point is the point in the feasible region that is
closest to the origin and this point is (1, 1) which gives us p⋆ = 1.

(b) The critical points of an optimization problem are points where the gradient is 0 or undefined, and also
points which are on the boundary of the constraint set.

Compute the value of the objective function at its critical points and find p⋆ and x⋆.

Solution: The critical points are as follows:

i. Point where gradient of objective function is 0. i.e x1 = 0, x2 = 0. This point is infeasible.

ii. Points at infinity. As we go to infinity along any direction the objective value goes to infinity as well
so this cannot be optimal.

iii. Points along the boundary x1 = 0, x1 + x2 ≥ 2. Here the optimal value is given by,

min
x2∈R

1
2x2

2

x2 ≥ 2

The minimum is achieved by x2 = 2 and has value 2.

iv. Points along the boundary x1 + x2 = 2, x1 ≥ 0. Here the optimal value is given by,

min
x1∈R

1
2x2

1 + 1
2(2 − x1)2

x1 ≥ 0

The minimum is achieved at x1 = 1 and has value 1. The corresponding value for x2 = 1 and by
comparing this to values at other critical points we conclude that x⋆ = (1, 1) and p⋆ = 1.

(c) Next we solve the problem with the help of the dual. First, find the Lagrangian L(x, λ).
Solution: The Lagrangian L is:

L(x⃗, λ⃗) = 1
2x2

1 + 1
2x2

2 + λ1(−x1) + λ2(−x1 − x2 + 2).
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Figure 1

(d) Formulate the dual problem.
Solution: The dual problem writes:

d⋆ = max
λ⃗≥0

min
x

L(x, λ⃗)

.
Specifically, we can define g(λ⃗) := minx⃗∈R2 L(x⃗, λ⃗). To find the minimizer x⃗⋆(λ⃗), we can set the gradient
to zero:

∇L(x⃗⋆(λ⃗), λ⃗) =
[

x⋆
1(λ⃗) − λ1 − λ2

x⋆
2(λ⃗) − λ2

]
= 0.

This gives us x⃗⋆(λ⃗) = (λ1 + λ2, λ2). Then, we have:

g(λ⃗) = L(x⋆(λ⃗), λ⃗)

= 1
2(λ1 + λ2)2 + 1

2λ2
2 + λ1(−λ1 − λ2) + λ2(−λ1 − 2λ2 + 2)

= −1
2λ2

1 − λ1λ2 − λ2
2 + 2λ2.

so the dual problem is:

d⋆ = max
λ⃗≥0

−1
2λ2

1 − λ1λ2 − λ2
2 + 2λ2

(e) Solve the dual problem to find d⋆ and λ⃗⋆.
Solution: Our dual problem is:

d⋆ = max
λ⃗≥0

−1
2λ2

1 − λ1λ2 − λ2
2 + 2λ2
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Note that we can bound it as follows, since λ⃗ ≥ 0:

−1
2λ2

1 − λ1λ2 − λ2
2 + 2λ2 ≤ −λ2

2 + 2λ2

= −(λ2 − 1)2 + 1

≤ 1.

This bound is also achievable: we have equality if and only if λ⃗ = (0, 1). So, d⋆ = 1 and λ⃗⋆ = (0, 1).

(f) Does strong duality hold?

Solution: Yes, it does hold, since the primal is convex and Slater’s condition holds (we can find a point in
the interior of the feasible set, such as (2, 2)).

(g) Find p⋆ and x⋆.

Solution: By strong duality p⋆ = 1 and x⋆ = (1, 1).

(h) Finally, we use KKT conditions to find x⋆, λ⋆. First, Write down the KKT conditions and find x̃ and λ̃ that
satisfy it.

Solution: The KKT conditions are

i. (Lagrangian Stationarity) ∇x = 0 ⇒ x + (−λ1, 0)⊤ + (−λ2, −λ2)⊤ = 0
ii. (Dual Feasibility) λ1, λ2 ≥ 0
iii. (Primal Feasibility) x1 ≥ 0 and x1 + x2 ≥ 2
iv. (Complementary Slackness) λ1x1 = 0 and λ2(2 − x1 − x2) = 0

From the first condition we have that

x̃1 = λ̃1 + λ̃2, x̃2 = λ̃2

This implies from the fourth condition that λ̃1(λ̃1 + λ̃2) = 0 which implies λ̃1 = 0. It follows that
x̃1 = x̃2 = λ̃2 = 1 since x̃1 = x̃2 = λ̃2 = 0 does not satisfy the third condition.

(i) Argue why the optimal primal and dual solutions are given by x⋆ = x̃ and λ⋆ = λ̃.

Solution: The primal problem is convex and has strong duality so the KKT conditions are both necessary
and sufficient for optimality.

Aside: An aside connecting the necessity/sufficiency of the KKT conditions, Slater’s condition, and strong
duality.

i. Necessary and Sufficient conditions. A necessary condition for a point to be a local optimum is a
condition such that any point that is a local optimum must satisfy this condition. A sufficient condition
for a point to be a local optimum means that if a point satisfies this condition, then the point must be
an optimal point.
While subtle, notice how different necessity and sufficiency are: if the KKT conditions are necessary,
an optimal point must satisfy them but that is not to say there aren’t points that satisfy the KKT
conditions but are not local optima. On the other hand, sufficiency means that if you satisfy the KKT
conditions then you must be a local optima. In this sense, if you have necessity and sufficiency of the
KKT conditions for an optimization problem, you’re in great shape to solve your problem.

ii. Given an arbitrary optimization problem, the KKT conditions DO NOT have to be sufficient or
necessary; that is the optimal solution of a problem need not satisfy the KKT conditions.
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iii. For an optimization problem, if x⋆ is a local optima and the problem satisfies strong duality, then
the KKT conditions are necessary conditions. This means that there must exist exist (λ⋆, ν⋆) dual
variables satisfying such that x⋆, λ⋆, ν⋆ all satisfy the KKT conditions.

iv. There are a few weird/funky regularity conditions for some problems that also imply strong duality
and make the KKT conditions necessary for optimality (we never discussed these in class). When the
problem is nice and convex, the sledgehammer of constraint qualifications is what we all know and
love – Slater’s Condition or Slater’s Constraint Qualification (SCQ). That is not to say there are not
others; just that SCQ is the usually the easiest to verify and happens to work in most practical settings.

v. SCQ is also incredible because in addition to providing us a constraint qualification making KKT
necessary, it also gives us strong duality. However, we’ll see below that KKT is sufficient for convex
problems and that strong duality implies ⇐⇒ KKT conditions for convex problems as well, i.e. if
you have strong duality and convexity the the KKT condition are both necessary and sufficient for
optimality of a point.

vi. It is an amazing fact that for convex problems, the KKT conditions are always sufficient. Note this is
not a statement about SCQ. To prove this, assume we have the convex program

min
x

f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, ..., m

Ax = b

Then given (x⋆, λ⋆, ν⋆) that satisfy the KKT conditions, we have

∇f0(x⋆) +
∑

λ⋆
i ∇fi(x⋆) + A⊤ν⋆ = 0

and λ⋆
i fi(x⋆) = 0 for i = 1, ..., m. Since the fi are convex, then

L(x, λ⋆, ν⋆) = f0(x) +
∑

λ⋆
i fi(x) + ν∗⊤

(Ax − b)

is convex in x and thus x⋆ is a minimizer of L(x, λ⋆, ν⋆) (note we need convexity here because if it
were non-convex then an x⋆ satisfying lagrangian stationarity might not be the global minimizer of
the lagrangian). Thus if x is feasible for the primal problem then

f0(x) ≥ L(x, λ⋆, ν⋆)

≥ L(x⋆, λ⋆, ν⋆)

= f0(x⋆)

and hence x⋆ is a minimizer (using the fact that λ⋆
i fi(x⋆) = 0 for i = 1, ..., m) to get the equality in

the last line.

vii. Slater’s theorem is a statement about when we have strong duality. Having strong duality implies the
KKT conditions always hold. To see this if you have strong duality you have the chain

d⋆ = g(λ⋆, ν⋆)

= min
x

f0(x) +
∑

λ⋆
i fi(x) +

∑
ν⋆

i hi(x)

≤ f0(x⋆) +
∑

λ⋆
i fi(x⋆) +

∑
ν⋆

i hi(x⋆)

≤ f0(x⋆)
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= p⋆

where fi are convex and hi are affine. Since d⋆ = p⋆ we can infer complementary slackness and infer
that x⋆ minimizes L(x, λ⋆, ν⋆) by the third line. These combined with primal and dual feasibility are
the KKT conditions.

viii. We have
A. Optimality and Strong Duality ⇒ KKT (for all problems)
B. KKT and convexity ⇒ optimality and Strong Duality (for convex problems)
C. SCQ ⇒ Strong duality for convex problems
D. If convexity and strong duality hold then we have: KKT ⇐⇒ optimality.

ix. For more general theory and more discussion on the topic, see the more general Fritz John conditions.
The theory concerning these topics is involved enough and can be combined with duality theory to
make an entire course worth of material.

2. Lagrangian Dual of a QP

Consider the standard form of a convex quadratic program, with Q ≻ 0:

min
x⃗

1
2 x⃗⊤Qx⃗ (4)

s.t. Ax⃗ ≤ b⃗ (5)

(a) Write the Lagrangian function L(x⃗, λ⃗).
Solution:

L(x⃗, λ⃗) = 1
2 x⃗⊤Qx⃗ + λ⃗⊤(Ax⃗ − b⃗) (6)

(b) Write the Lagrangian dual function, g(λ⃗).
Solution:

g(λ⃗) = inf
x⃗

L(x⃗, λ⃗) (7)

We can find this infimum by setting ∇x⃗L(x⃗⋆, λ⃗) = 0:

Qx⃗⋆ + A⊤λ⃗ = 0 =⇒ x⃗⋆ = −Q−1A⊤λ⃗ (8)

Substituting, we get

g(λ⃗) = L(x⃗⋆, λ⃗) (9)

= 1
2 λ⃗⊤AQ−⊤A⊤λ⃗ − λ⃗⊤AQ−1A⊤λ⃗ − λ⃗⊤b⃗ (10)

= −1
2 λ⃗⊤AQ−1A⊤λ⃗ − λ⃗⊤b⃗ (11)

(c) Show that the Lagrangian dual problem is convex by writing it in “standard QP form” – that is, in a form
similar to the original problem. Is the Lagrangian dual problem convex in general?
Solution: The Lagrangian dual problem writes

max
λ⃗≥0

g(λ⃗) = max
λ⃗≥0

− 1
2 λ⃗⊤AQ−1A⊤λ⃗ − λ⃗⊤b⃗, (12)
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the maximization of a concave function of λ⃗ over the convex region given by the non-negative orthant
λ⃗ ≥ 0. The dual problem is therefore convex.

While in this problem, the primal problem was convex, it turns out that the Lagrangian dual problem is a
convex problem even when the primal is not. To see this, examine its general form:

max
λ⃗≥0

min
x⃗

L(x⃗, λ⃗) = max
λ⃗≥0

min
x⃗

[
f0(x⃗) +

n∑
i=1

λifi(x⃗)
]

(13)

This represents the pointwise minimum of affine functions of λ⃗, which we know to be concave. The
resulting maximization problem of a concave objective in λ⃗ over the convex region λ⃗ ≥ 0 is then a convex
optimization problem!

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6


