1. Magic with constraints

In this question, we will represent a problem in two different ways and show that strong duality holds in one case but doesn't hold in the other.

Let

$$
f_{0}(x) \doteq \begin{cases}x^{3}-3 x^{2}+4, & x \geq 0 \tag{1}\\ -x^{3}-3 x^{2}+4, & x<0\end{cases}
$$

(a) Consider the minimization problem

$$
\begin{align*}
p^{*}=\inf _{x \in \mathbb{R}} & f_{0}(x) \tag{2}\\
\text { s.t. } & -1 \leq x, \quad x \leq 1 \tag{3}
\end{align*}
$$

i. Show that $p^{*}=2$ and the the set of optimizers $x \in \mathcal{X}^{*}$ is $\mathcal{X}^{*}=\{-1,1\}$ by examining the "critical" points, i.e., points where the gradient is zero, points on the boundaries, and $\pm \infty$.
ii. Show that the dual problem can be represented as

$$
\begin{equation*}
d^{*}=\sup _{\lambda_{1}, \lambda_{2} \geq 0} g(\vec{\lambda}) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\vec{\lambda})=\min \left\{g_{1}(\vec{\lambda}), g_{2}(\vec{\lambda})\right\} \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
& g_{1}(\vec{\lambda})=\inf _{x \geq 0} x^{3}-3 x^{2}+4-\lambda_{1}(x+1)+\lambda_{2}(x-1) \tag{6}\\
& g_{2}(\vec{\lambda})=\inf _{x<0}-x^{3}-3 x^{2}+4-\lambda_{1}(x+1)+\lambda_{2}(x-1) \tag{7}
\end{align*}
$$

iii. Next, show that

$$
\begin{align*}
& g_{1}(\vec{\lambda}) \leq-3 \lambda_{1}+\lambda_{2} \tag{8}\\
& g_{2}(\vec{\lambda}) \leq \lambda_{1}-3 \lambda_{2} \tag{9}
\end{align*}
$$

Use this to show that $g(\vec{\lambda}) \leq 0$ for all $\lambda_{1}, \lambda_{2} \geq 0$.
iv. Show that $g(\overrightarrow{0})=0$ and conclude that $d^{*}=0$.
v. Does strong duality hold?
(b) Now, consider a problem equivalent to the minimization in (2):

$$
\begin{align*}
p^{*}=\inf _{x \in \mathbb{R}} & f_{0}(x) \tag{10}\\
\text { s.t. } & x^{2} \leq 1 \tag{11}
\end{align*}
$$

Observe that $p^{*}=2$ and the set of optimizers $x \in \mathcal{X}^{*}$ is $\mathcal{X}^{*}=\{-1,1\}$, since this problem is equivalent to the one in part (a).
i. Show that the dual problem can be represented as

$$
\begin{equation*}
d^{*}=\sup _{\lambda \geq 0} g(\lambda), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\lambda)=\min \left\{g_{1}(\lambda), g_{2}(\lambda)\right\} \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
& g_{1}(\lambda)=\inf _{x \geq 0} x^{3}-3 x^{2}+4+\lambda\left(x^{2}-1\right) \tag{14}\\
& g_{2}(\lambda)=\inf _{x<0}-x^{3}-3 x^{2}+4+\lambda\left(x^{2}-1\right) . \tag{15}
\end{align*}
$$

ii. Show that $g_{1}(\lambda)=g_{2}(\lambda)=\left\{\begin{array}{ll}4-\lambda, & \lambda \geq 3 \\ -\frac{4}{27}(3-\lambda)^{3}+4-\lambda, & 0 \leq \lambda<3 .\end{array}\right.$.
iii. Conclude that $d^{*}=2$ and the optimal $\lambda=\frac{3}{2}$.
iv. Does strong duality hold?

2. Complementary Slackness

Consider the problem:

$$
\begin{align*}
p^{\star}=\min _{x \in \mathbb{R}} & x^{2} \tag{16}\\
\text { s.t. } & x \geq 1, x \leq 2 . \tag{17}
\end{align*}
$$

(a) Does Slater's condition hold? Is the problem convex? Does strong duality hold?
(b) Find the Lagrangian $\mathcal{L}\left(x, \lambda_{1}, \lambda_{2}\right)$.
(c) Find the dual function $g\left(\lambda_{1}, \lambda_{2}\right)$ so that the dual problem is given by,

$$
\begin{equation*}
d^{\star}=\max _{\lambda_{1}, \lambda_{2} \in \mathbb{R}_{+}} g\left(\lambda_{1}, \lambda_{2}\right) . \tag{18}
\end{equation*}
$$

(d) Solve the dual problem in (18) for d^{\star}.
(e) Solve for $x^{\star}, \lambda_{1}^{\star}, \lambda_{2}^{\star}$ that satisfy KKT conditions.
(f) Can you spot a connection between the values of $\lambda_{1}^{\star}, \lambda_{2}^{\star}$ in relation to whether the corresponding inequality constraints are strict or not at the optimal x^{\star} ?

