1. Magic with constraints

In this question, we will represent a problem in two different ways and show that strong duality holds in one case but doesn't hold in the other.

Let

$$f_0(x) \doteq \begin{cases} x^3 - 3x^2 + 4, & x \ge 0\\ -x^3 - 3x^2 + 4, & x < 0. \end{cases}$$
(1)

(a) Consider the minimization problem

$$p^* = \inf_{x \in \mathbb{R}} \quad f_0(x) \tag{2}$$

s.t.
$$-1 \le x, \ x \le 1.$$
 (3)

- i. Show that $p^* = 2$ and the set of optimizers $x \in \mathcal{X}^*$ is $\mathcal{X}^* = \{-1, 1\}$ by examining the "critical" points, i.e., points where the gradient is zero, points on the boundaries, and $\pm \infty$.
- ii. Show that the dual problem can be represented as

$$d^* = \sup_{\lambda_1, \lambda_2 \ge 0} g(\vec{\lambda}), \tag{4}$$

where

$$g(\vec{\lambda}) = \min\left\{g_1(\vec{\lambda}), g_2(\vec{\lambda})\right\},\tag{5}$$

with

$$g_1(\vec{\lambda}) = \inf_{x \ge 0} x^3 - 3x^2 + 4 - \lambda_1(x+1) + \lambda_2(x-1)$$
(6)

$$g_2(\vec{\lambda}) = \inf_{x<0} -x^3 - 3x^2 + 4 - \lambda_1(x+1) + \lambda_2(x-1).$$
(7)

iii. Next, show that

$$g_1(\vec{\lambda}) \le -3\lambda_1 + \lambda_2 \tag{8}$$

$$g_2(\vec{\lambda}) \le \lambda_1 - 3\lambda_2. \tag{9}$$

Use this to show that $g(\vec{\lambda}) \leq 0$ for all $\lambda_1, \lambda_2 \geq 0$.

iv. Show that $g(\vec{0}) = 0$ and conclude that $d^* = 0$.

v. Does strong duality hold?

(b) Now, consider a problem equivalent to the minimization in (2):

$$p^* = \inf_{x \in \mathbb{R}} \quad f_0(x) \tag{10}$$

s.t.
$$x^2 \le 1$$
. (11)

Observe that $p^* = 2$ and the set of optimizers $x \in \mathcal{X}^*$ is $\mathcal{X}^* = \{-1, 1\}$, since this problem is equivalent to the one in part (a).

i. Show that the dual problem can be represented as

$$d^* = \sup_{\lambda \ge 0} g(\lambda), \tag{12}$$

where

$$g(\lambda) = \min\{g_1(\lambda), g_2(\lambda)\},\tag{13}$$

with

$$g_1(\lambda) = \inf_{x \ge 0} x^3 - 3x^2 + 4 + \lambda(x^2 - 1)$$
(14)

$$g_2(\lambda) = \inf_{x<0} -x^3 - 3x^2 + 4 + \lambda(x^2 - 1).$$
(15)

ii. Show that
$$g_1(\lambda) = g_2(\lambda) = \begin{cases} 4 - \lambda, & \lambda \ge 3\\ -\frac{4}{27}(3 - \lambda)^3 + 4 - \lambda, & 0 \le \lambda < 3. \end{cases}$$

iii. Conclude that $d^* = 2$ and the optimal $\lambda = \frac{3}{2}$.

iv. Does strong duality hold?

2. Complementary Slackness

Consider the problem:

$$p^* = \min_{x \in \mathbb{R}} \quad x^2 \tag{16}$$

s.t.
$$x \ge 1, x \le 2.$$
 (17)

(a) Does Slater's condition hold? Is the problem convex? Does strong duality hold?

(b) Find the Lagrangian $\mathcal{L}(x, \lambda_1, \lambda_2)$.

(c) Find the dual function $g(\lambda_1,\lambda_2)$ so that the dual problem is given by,

$$d^{\star} = \max_{\lambda_1, \lambda_2 \in \mathbb{R}_+} g(\lambda_1, \lambda_2).$$
(18)

(d) Solve the dual problem in (18) for d^* .

(e) Solve for $x^{\star}, \lambda_1^{\star}, \lambda_2^{\star}$ that satisfy KKT conditions.

(f) Can you spot a connection between the values of λ_1^* , λ_2^* in relation to whether the corresponding inequality constraints are strict or not at the optimal x^* ?