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1. Magic with constraints

In this question, we will represent a problem in two different ways and show that strong duality holds in one case
but doesn’t hold in the other.

Let

f0(x) .=

x3 − 3x2 + 4, x ≥ 0

−x3 − 3x2 + 4, x < 0.
(1)

(a) Consider the minimization problem

p∗ = inf
x∈R

f0(x) (2)

s.t. − 1 ≤ x, x ≤ 1. (3)

i. Show that p∗ = 2 and the the set of optimizers x ∈ X ∗ is X ∗ = {−1, 1} by examining the “critical"
points, i.e., points where the gradient is zero, points on the boundaries, and ±∞.
Solution: First, let us establish the critical points at which the derivative of f0(x) = 0. Note that by
definition, f0(x) is differentiable everywhere except possibly at x = 0. We first show that f0(x) is in
fact differentiable everywhere by taking the right and left derivatives at x = 0 and showing that they
are equivalent.
We can calculate these right and left derivatives as follows. For h > 0, the right derivative at x = 0 is
given by

lim
h→0

f0(0 + h) − f0(0)
h

= lim
h→0

h3 − 3h2 + 4 − 4
h

(4)

= 0. (5)

Similarly, for h > 0, the left derivative at x = 0 is given by

lim
h→0

f0(0) − f0(0 − h)
h

= lim
h→0

4 − h3 + 3h2 − 4
h

(6)

= 0. (7)

Thus, f0 is differentiable everywhere, and x = 0 is a critical point since its derivative is zero.

Next, we calculate all critical points at which the derivative is zero:

∇xf0(x) =

3x2 − 6x, x ≥ 0

−3x2 − 6x, x < 0
= 0 ⇒ x ∈ {0, ±2} (8)

We now have a list of all critical points to test: x ∈ {0, ±2} (where the derivative is 0), x = ±1
(constraint boundaries), and x = ±∞. The only critical points that fall within our constraints are
x ∈ {0, ±1}, so we examine the function at these 3 points:

f0(1) = f0(−1) = 2 (9)
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f0(0) = 4. (10)

Thus, p∗ = 2 and X ∗ = {−1, 1}.

ii. Show that the dual problem can be represented as

d∗ = sup
λ1,λ2≥0

g(λ⃗), (11)

where
g(λ⃗) = min

{
g1(λ⃗), g2(λ⃗)

}
, (12)

with

g1(λ⃗) = inf
x≥0

x3 − 3x2 + 4 − λ1(x + 1) + λ2(x − 1) (13)

g2(λ⃗) = inf
x<0

−x3 − 3x2 + 4 − λ1(x + 1) + λ2(x − 1). (14)

Solution: The Lagrangian is given by

L(x, λ⃗) = f0(x) + λ1(−x − 1) + λ2(x − 1). (15)

The dual function g(λ⃗) is then given by

g(λ⃗) = inf
x

L(x, λ⃗) (16)

= min
{

inf
x≥0

L(x, λ⃗), inf
x<0

L(x, λ⃗)
}

(17)

= min
{

g1(λ⃗), g2(λ⃗)
}

(18)

for the given g1(λ⃗) and g2(λ⃗), as desired.

iii. Next, show that

g1(λ⃗) ≤ −3λ1 + λ2 (19)

g2(λ⃗) ≤ λ1 − 3λ2. (20)

Use this to show that g(λ⃗) ≤ 0 for all λ1, λ2 ≥ 0.

Solution: Because g1(λ⃗) is the infimum over all x ≥ 0 of L(x, λ⃗), it is less than or equal to any
instantiation of L(x, λ⃗) at a particular value of x ≥ 0. Thus, for instantiation x = 2, we can write

g1(λ⃗) = inf
x≥0

L(x, λ⃗) (21)

≤ L(2, λ⃗) (22)

= −3λ1 + λ2 (23)

as desired. Analogously, we can instantiate g2(λ⃗) at x = −2 and write

g2(λ⃗) = inf
x<0

L(x, λ⃗) (24)

≤ L(−2, λ⃗) (25)

= λ1 − 3λ2, (26)
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giving us the two desired inequalities.

We now use these inequalities to show that g(λ⃗) ≤ 0 for all λ1, λ2 ≥ 0. Since g(λ⃗) is the minimization
of g1(λ⃗) and g2(λ⃗), we can use the upper bounds we just established to write

g(λ⃗) = min
{

g1(λ⃗), g2(λ⃗)
}

(27)

≤ min {−3λ1 + λ2, λ1 − 3λ2} (28)

≤ 0. (29)

The last inequality follows from a subtle relationship between the two expressions over which we
are minimizing. First, note that it is sufficient to show that either −3λ1 + λ2 or λ1 − 3λ2 must be
negative, since g(λ⃗) is determined by the minimum of the two values. Consider the case in which
−3λ1 + λ2 ≥ 0, i.e., λ2 ≥ 3λ1; this implies that the second expression λ1 − 3λ2 ≤ 0, so g(λ⃗) ≤ 0
holds. Alternatively, if λ1 − 3λ2 > 0, i.e., λ1 > 3λ2, then the first expression −3λ1 + λ2 < 0, so
g(λ⃗) ≤ 0 holds. Thus, as these cases are exhaustive, g(λ⃗) ≤ 0 for all λ1, λ2 ≥ 0 as desired.

iv. Show that g(⃗0) = 0 and conclude that d∗ = 0.

Solution: In part 1.((a))iii, we proved that g(λ⃗) ≤ 0 for all λ1, λ2 ≥ 0. Since d∗ is the supremum
over all feasible values of g(λ⃗), it is sufficient to show that there exists a λ⃗ for which this upper bound
is attained.

Toward this objective, consider g at λ⃗ = 0:

g(⃗0) = min
{

g1(⃗0), g2(⃗0)
}

(30)

= min
{

inf
x≥0

x3 − 3x2 + 4, inf
x<0

−x3 − 3x2 + 4
}

(31)

= min {0, 0} (32)

= 0. (33)

Note that the third equality can be shown by examining the critical points of each objective function,
which are the same as those of the unconstrained primal function in part 1.((a))i; this minimum is
achieved at x = ±2.

We can now conclude that the maximum possible value of the dual (i.e., zero) is attained for λ⃗ = 0⃗,
and thus d∗ = 0 as desired.

v. Does strong duality hold?

Solution: Since d∗ = 0 < 2 = p∗, strong duality does not hold. This is not surprising, since the
objective function f0(x) is non-convex.

(b) Now, consider a problem equivalent to the minimization in (2):

p∗ = inf
x∈R

f0(x) (34)

s.t. x2 ≤ 1. (35)
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Observe that p∗ = 2 and the set of optimizers x ∈ X ∗ is X ∗ = {−1, 1}, since this problem is equivalent
to the one in part (a).

i. Show that the dual problem can be represented as

d∗ = sup
λ≥0

g(λ), (36)

where
g(λ) = min{g1(λ), g2(λ)}, (37)

with

g1(λ) = inf
x≥0

x3 − 3x2 + 4 + λ(x2 − 1) (38)

g2(λ) = inf
x<0

−x3 − 3x2 + 4 + λ(x2 − 1). (39)

Solution: This solution is identical in strategy to that in part 1.((a))ii The Lagrangian is given by

L(x, λ) = f0(x) + λ(x2 − 1). (40)

The dual function g(λ) is then given by

g(λ) = inf
x

L(x, λ) (41)

= min
{

inf
x≥0

L(x, λ), inf
x<0

L(x, λ)
}

(42)

= min {g1(λ), g2(λ)} (43)

for the given g1(λ) and g2(λ), as desired.

ii. Show that g1(λ) = g2(λ) =

4 − λ, λ ≥ 3

− 4
27 (3 − λ)3 + 4 − λ, 0 ≤ λ < 3.

.

Solution: We first show that g2(λ⃗) = g1(λ⃗):

g2(λ) = inf
x<0

−x3 − 3x2 + 4 + λ(x2 − 1) (44)

= inf
−x>0

(−x)3 − 3(−x)2 + 4 + λ((−x)2 − 1) (45)

= inf
x≥0

x3 − 3x2 + 4 + λ(x2 − 1) (46)

= g1(λ). (47)

The last equality follows from a change in the variable over which we compute the infimum (−x to
x), which does not affect the value of the infimum. Note also that we have added the point x = 0 as
a feasible point by amending our constraint from −x > 0 to −x ≥ 0; this does not affect the value of
the infimum either, since we do not require it to be attained as we do when minimizing.
Next, let us compute g1(λ) directly. Setting the derivative of g1’s objective function with respect to x

to zero, we have
3x2 − 2(3 − λ)x = 0 =⇒ x = 0 or x = 2

3(3 − λ). (48)

We now consider all critical points of g1’s objective function: x ∈ {0, 2
3 (3 − λ} (where the derivative

is 0) and x ∈ {0, ∞} (boundary points).
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First, suppose λ ≥ 3. In this case, x = 2
3 (3 − λ) is no longer in the range x ≥ 0, so we need only

check boundary points x = 0 and x = ∞. As x → ∞, the function value also approaches infinity, so
the infimum is attained at x = 0, and thus g1(λ) = 4 − λ.

Next, assume 0 ≤ λ < 3. In this case, we must check the function value at x = 0, x = 2
3 (3 − λ), and

x = ∞ to determine where the infimum is attained. As previously established, the function approaches
infinity as x → ∞, so we need only compare the values 4 − λ (at x = 0) and − 4

27 (3 − λ)3 + 4 − λ at
x = 2

3 (3 − λ). Since 3 − λ > 0, we know that − 4
27 (3 − λ)3 is always negative, and thus the infimum

is − 4
27 (3 − λ)3 + 4 − λ.

Combining the two cases above yields the desired expression for g1(λ) = g2(λ).
iii. Conclude that d∗ = 2 and the optimal λ = 3

2 .
Solution: Since g1(λ) = g2(λ), we have g(λ) = g1(λ) = g2(λ). We examine each range of possible
λ values in turn to determine the supremum. For λ ≥ 3, the supremum value of g(λ) = 1 is achieved
at λ = 3.
For 0 ≤ λ < 3, the supremum of g(λ) is computed as follows. First, we set the derivative of g(λ)
with respect to λ to 0:

12
27(3 − λ)2 − 1 = 0 =⇒ (3 − λ)2 = 9

4 =⇒ λ = 3
2 or λ = 9

2 . (49)

Since the expression is valid only for 0 ≤ λ < 3, we examine values at λ ∈ {0, 3} (boundary points)
and at the computed λ = 3

2 . We observe that the supremum is achieved at λ = 3
2 with g( 3

2 ) = 2.

Finally, we note that the overall supremum occurs in the second case, at λ = 3
2 , and thus d∗ = 2 as

desired.

iv. Does strong duality hold?
Solution: In this case, p∗ = 2 = d∗, so strong duality holds.

2. Complementary Slackness

Consider the problem:

p⋆ = min
x∈R

x2 (50)

s.t. x ≥ 1, x ≤ 2. (51)

(a) Does Slater’s condition hold? Is the problem convex? Does strong duality hold?

Solution: We have a strictly feasible point x = 1.5 that lies in the relative interior of the domain of the
objective function; thus, Slater’s condition holds. The objective function x2 is convex and the inequality
constraints are affine and thus convex, so the problem is convex. Since Slater’s condition holds and the
problem is convex, strong duality holds.

(b) Find the Lagrangian L(x, λ1, λ2).
Solution: L(x, λ1, λ2) = x2 + λ1(−x + 1) + λ2(x − 2).

(c) Find the dual function g(λ1, λ2) so that the dual problem is given by,

d⋆ = max
λ1,λ2∈R+

g(λ1, λ2). (52)
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Solution:
g(λ1, λ2) = inf

x
L(x, λ1, λ2). (53)

Note that L is convex with respect to x, thus setting the gradient with respect to x to 0 we obtain, x = λ1−λ2
2 .

Thus,

g(λ1, λ2) = − (λ2 − λ1)2

4 + λ1 − 2λ2. (54)

(d) Solve the dual problem in (52) for d⋆.

Solution: Let us first try setting gradient with respect to λ1 and λ2 to 0. This gives us,

λ2 − λ1

2 + 1 =0 (55)

−λ2 − λ1

2 − 2 =0. (56)

This has no solution. We can see that a quadratic objective function could be unbounded even if it was
convex. To get meaningful solutions we must check for optimal values at the boundaries. Checking at
boundary λ1 = 0.

g(0, λ2) = −λ2
2

4 − 2λ2. (57)

This is a concave function so taking gradient with respect to λ2 and setting it to zero we obtain,

−λ2

2 − 2 =0 (58)

=⇒ λ2 = − 4. (59)

This is not feasible so we must check value at λ2 = 0. We have g(0, 0) = 0. Finally let us check at the
other boundary λ2 = 0.

g(λ1, 0) = −λ2
1

4 + λ1. (60)

Again this is a concave function so taking gradient with respect to λ1 and setting it to zero we obtain,

−λ1

2 + 1 = 0 (61)

=⇒ λ1 = 2. (62)

We have g(2, 0) = −1 + 2 = 1. Thus d⋆ = 1.

(e) Solve for x⋆, λ⋆
1, λ⋆

2 that satisfy KKT conditions.

Solution: We have: From stationarity,

∇xL(x, λ1, λ2) = 0 (63)

=⇒ 2x − λ1 + λ2 = 0. (64)

From primal feasibility,

x ≥ 1 (65)

x ≤ 2. (66)

From dual feasibility,

λ1 ≥ 0 (67)
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λ2 ≥ 0. (68)

Finally from complementary slackness,

λ1(−x + 1) = 0 (69)

λ2(x − 2) = 0. (70)

First observe that we cannot have λ1 ̸= 0 and λ2 ̸= 0 since in this case complementary slackness would not
have any feasible solutions for x. Next assume that λ1 = 0, λ2 ̸= 0. Then from complementary slackness,
x = 2. Substituting this in equation 64, we get λ2 = −4 which violates dual feasibility. Next assume
that λ1 = 0, λ2 = 0. Then from 64 we have x = 0 which violates primal feasibility. Finally assume that
λ1 ̸= 0, λ2 = 0. From complementary slackness we have x = 1 and from 64 we have λ1 = 2 which
satisfies dual feasibility.

Thus x⋆ = 1, λ⋆
1 = 2, λ⋆

2 = 0 satisfy KKT conditions.

(f) Can you spot a connection between the values of λ⋆
1, λ⋆

2 in relation to whether the corresponding inequality
constraints are strict or not at the optimal x⋆?

Solution: We have λ1 ̸= 0 and the corresponding inequality x ≥ 1 is satisfied with equality (and hence is
not strict) at x⋆ = 1.

We have λ2 = 0 and the corresponding inequality is strict at x⋆ = 1. The non-zero λ1 tells us that if we
relax the constraint x ≥ 1 (for example, to x ≥ 0.9) we can reduce the objective function further.
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