
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Discussion 11

We might not cover all the problems on the worksheet, as discussion worksheets are not always designed to be
finished within an hour. However, this is totally fine since they are deliberately made slightly longer so they can serve
as resources you can use to practice, reinforce, and build upon concepts covered in lectures and homework.

1. A Linear Program

Let A ∈ Rm×n, y⃗ ∈ Rm and µ > 0. First, consider the following problem:

p⋆ = min
x⃗

∥Ax⃗ − y⃗∥1 . (1)

For i ∈ {1, . . . , m}, we denote by a⃗⊤
i the i-th row of A, so that A =


a⃗⊤

1
...

a⃗⊤
m

.

(a) Express the problem as an LP.

Solution: Using epigraph reformulation and introducing slack variable z⃗, this problem can be written as

min
x⃗,z⃗

z⃗⊤1⃗

s.t. zi ≥
∣∣⃗a⊤

i x⃗ − yi

∣∣ , i = 1, . . . , m.

Equivalently, we can express it as the following LP:

min
x⃗,z⃗

z⃗⊤1⃗

s.t. zi ≥ a⃗⊤
i x⃗ − yi, zi ≥ −(⃗a⊤

i x⃗ − yi), i = 1, . . . , m.

(b) Show that a dual to the problem can be written as

d⋆ = max
u⃗

−u⃗⊤y⃗ : A⊤u⃗ = 0, ∥u⃗∥∞ ≤ 1. (2)

HINT: Use the fact that, for any vector z:

max
u⃗ : ∥u⃗∥1≤1

u⃗⊤z⃗ = ∥z⃗∥∞ , max
u⃗ : ∥u⃗∥∞≤1

u⃗⊤z⃗ = ∥z⃗∥1 . (3)

Additionally, you may use the following fact: If the primal problem is expressed as p⋆ = min
x⃗

max
y⃗

L(x⃗, y⃗)

(which is p⋆ = min
x⃗

f0(x) for f0(x) = max
y⃗

L(x⃗, y⃗)), then the dual problem can be obtained by swapping

the max and min: d⋆ = max
y⃗

min
x⃗

L(x⃗, y⃗).

Solution: Based on the hint, we substitute the objective function with the variational characterization:

∥Ax⃗ − y⃗∥1 = max
u⃗ : ∥u⃗∥∞≤1

u⃗⊤(Ax⃗ − y⃗), (4)

The optimization problem thus becomes:

p⋆ = min
x⃗

max
u⃗ : ∥u⃗∥∞≤1

L(x⃗, u⃗), (5)
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where
L(x⃗, u⃗) = u⃗⊤(Ax⃗ − y⃗). (6)

Note that the primal is already expressed in min-max form. Recall exchanging min and max directly leads
to the dual problem:

p⋆ ≥ d⋆ = max
u⃗ : ∥u⃗∥∞≤1

min
x⃗

L(x⃗, u⃗) (7)

= max
u⃗ : ∥u⃗∥∞≤1

g(u⃗), (8)

where g is the dual function:

g(u⃗) = min
x⃗

L(x⃗, u⃗) =

−u⃗⊤y⃗ if A⊤u⃗ = 0,

−∞ otherwise.
(9)

The dual problem can therefore be written as

d⋆ = max
u⃗

−u⃗⊤y⃗

s.t. A⊤u⃗ = 0, ∥u⃗∥∞ ≤ 1.

Now, consider the following more complicated problem involving both the ℓ1 and ℓ∞ norms:

p⋆ = min
x⃗

∥Ax⃗ − y⃗∥1 + µ ∥x⃗∥∞ . (10)

(c) Express the problem as an LP.

Solution: Similar to part (a), we can introduce slack variable z⃗ and write

min
x⃗,z⃗,t

z⃗⊤1⃗ + µt : t ≥ ∥x⃗∥∞ , zi ≥ |⃗a⊤
i x⃗ − yi|, i = 1, . . . , m. (11)

which is an LP:

min
x⃗,z⃗,t

z⃗⊤1⃗ + µt : t ≥ xj , t ≥ −xj , j = 1, . . . , n

zi ≥ a⃗⊤
i x⃗ − yi, zi ≥ −(⃗a⊤

i x⃗ − yi), i = 1, . . . , m.

(12)

(d) Show that a dual to the problem can be written as

d⋆ = max
u⃗

−u⃗⊤y⃗

s.t. ∥u⃗∥∞ ≤ 1,
∥∥A⊤u⃗

∥∥
1 ≤ µ.

HINT: Use the fact that, for any vector z:

max
u⃗ : ∥u⃗∥1≤1

u⃗⊤z⃗ = ∥z⃗∥∞ , max
u⃗ : ∥u⃗∥∞≤1

u⃗⊤z⃗ = ∥z⃗∥1 . (13)

Additionally, you may use the following fact: If the primal problem is expressed as p⋆ = min
x⃗

max
y⃗

L(x⃗, y⃗)

(which is p⋆ = min
x⃗

f0(x) for f0(x) = max
y⃗

L(x⃗, y⃗)), then the dual problem can be obtained by swapping

the max and min: d⋆ = max
y⃗

min
x⃗

L(x⃗, y⃗).
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Solution: Similar to part (b), we can express the objective function as

∥Ax⃗ − y⃗∥1 + µ ∥x⃗∥∞ = max
u⃗ : ∥u⃗∥∞≤1
v⃗ : ∥v⃗∥1≤µ

u⃗⊤(Ax⃗ − y⃗) + v⃗⊤x⃗, (14)

The optimization problem thus becomes:

p⋆ = min
x⃗

max
u⃗ : ∥u⃗∥∞≤1
v⃗ : ∥v⃗∥1≤µ

L(x⃗, u⃗, v⃗), (15)

where
L(x⃗, u⃗, v⃗) = u⊤(Ax⃗ − y⃗) + v⃗⊤x⃗. (16)

Again, recall exchanging min and max leads to the dual:

p⋆ ≥ d⋆ = max
u⃗ : ∥u⃗∥∞≤1
v⃗ : ∥v⃗∥1≤µ

min
x⃗

L(x⃗, u⃗, v⃗) (17)

= max
u⃗ : ∥u⃗∥∞≤1
v⃗ : ∥v⃗∥1≤µ

g(u⃗, v⃗), (18)

where g is the dual function:

g(u⃗, v⃗) = min
x⃗

L(x⃗, u⃗, v⃗) =

−u⃗⊤y⃗ if A⊤u⃗ + v⃗ = 0⃗,

−∞ otherwise.
(19)

The dual problem writes

d⋆ = max
u⃗ , v⃗

−u⃗⊤y⃗

s.t. A⊤u⃗ + v⃗ = 0⃗, ∥u⃗∥∞ ≤ 1, ∥v⃗∥1 ≤ µ.

Note we can eliminate v⃗:

d⋆ = max
u⃗

−u⃗⊤y⃗

s.t. ∥u⃗∥∞ ≤ 1,
∥∥A⊤u⃗

∥∥
1 ≤ µ.

2. A review of standard problem formulations

In this question, we review conceptually the standard forms of various problems and the assertions we can (and
cannot!) make about each.

(a) Linear programming (LP).

i. Write the most general form of a linear program (LP) and list its defining attributes.
Solution: A general LP can be written as

p∗ = min
x⃗∈Rn

c⃗⊤x⃗ + d (20)

s.t. Aeqx⃗ = b⃗eq (21)

Ax⃗ ≤ b⃗, (22)
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or equivalently,

p∗ = min
x⃗∈Rn

c⃗⊤x⃗ + d (23)

s.t. Aeqx⃗ = b⃗eq (24)

x⃗ ≥ 0⃗. (25)

The first LP formulation is known as the inequality form; the second is known as the conic form. A
full treatment of the equivalence of these forms and how to convert between them can be found in
section 9.3 of Calafiore & El Ghaoui.

ii. Under what conditions is an LP convex?
Solution: An LP is always convex, as the objective function and all constraints are convex (affine)
and all equality constraints are affine.

(b) Quadratic programming (QP).

i. Write the most general form of a quadratic program (QP) and list its defining attributes.
Solution: A general QP can be written as

p∗ = min
x⃗∈Rn

1
2 x⃗⊤Hx⃗ + c⃗⊤x⃗ + d (26)

s.t. Aeqx⃗ = b⃗eq (27)

Ax⃗ ≤ b⃗. (28)

ii. Under what conditions is a QP convex?
Solution: A QP is convex if and only if H ⪰ 0 (i.e., PSD).

(c) Quadratically-constrained quadratic programming (QCQP).

i. Write the most general form of a quadratically-constrained quadratic program (QCQP) and list its
defining attributes.
Solution: A general QCQP can be written as

p∗ = min
x⃗∈Rn

x⃗⊤H0x⃗ + 2c⃗⊤x⃗ + d (29)

s.t. x⃗⊤Hix⃗ + 2c⃗⊤
i x⃗ + di ≤ 0, i = 1, . . . , m (30)

x⃗⊤Hj x⃗ + 2c⃗⊤
j x⃗ + dj = 0, j = 1, . . . , q. (31)

ii. Under what conditions is a QCQP convex?
Solution: A QCQP is convex if and only if all matrices H0 and Hi, i = 1, . . . , m are PSD, and Hj = 0
for all j = 1, . . . , q (i.e., when the objective and all inequality constraints are convex quadratic, and
all the equality constraints are actually affine.

(d) Second-order cone programming (SOCP).

i. Write the most general form of a second-order cone program (SOCP) and list its defining attributes.
Solution: A general SOCP can be written as

p∗ = min
x⃗∈Rn

c⃗⊤x⃗ (32)
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s.t.
∥∥∥Aix⃗ + b⃗i

∥∥∥
2

≤ c⃗⊤
i x⃗ + di, i = 1, . . . , m, (33)

or equivalently,

p∗ = min
x⃗∈Rn

c⃗⊤x⃗ (34)

s.t. (Aix⃗ + b⃗i, c⃗⊤
i x⃗ + di) ∈ Kmi i = 1, . . . , m, (35)

where second-order cone (SOC) Kn
.= {(x⃗, t), x⃗ ∈ Rn, t ∈ R | ∥x⃗∥2 ≤ t}. The first SOCP formu-

lation is known as the standard inequality form; the second is known as the conic standard form.

ii. Under what conditions is an SOCP convex?
Solution: An SOCP is always convex, as the objective function is convex (linear) and the constraint
stipulates that points lie within a convex set. A thorough discussion of the convexity of SOC constraints
can be found in Calafiore & El Ghaoui chapter 10.

(e) Relationships. Recall that

LP ⊂ QPconvex ⊂ QCQPconvex ⊂ SOCP ⊂ {all convex programs}, (36)

where LP denotes the set of all linear programs, QPconvex denotes the set of all convex quadratic programs,
etc. Which of these problems can be solved most efficiently? Why are these categorizations useful?

Solution: In general, problems to the left side of the subset sequence above can be solved more efficiently
than those on the right, for problems of comparable size: LPs are arguably easiest (optima are always
achieved at a critical point, so we just need to check those analytically, e.g. using the simplex algorithm),
while general convex problems must use numerical algorithms like gradient descent and Newton’s method,
whose efficiency depends on the particular geometric characteristics of the problem. Intermediate forms
(convex QPs/QCQPs, SOCPs) fall somewhere in between in terms of difficulty: there’s lots of research on
how to solve them efficiently (one popular set of approaches is called “interior point methods”), and there
are a number of off-the-shelf solvers available (e.g., CVX).

Though we don’t get a chance to explore it much in this class, knowing these classes of problems is useful
when encountering optimization problems in the wild — if you can write your problem in one of the forms
above, you know what kinds of solutions and convergence guarantees you can expect, and often employ
existing software to help you solve it. For further discussion of these problem classes — as well as an
even more general class known as semidefinite programming (SDP), of which SOCPs are a subset — we
encourage you to take EECS 227B and 227C.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5


