
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Discussion 12

We might not cover all the problems on the worksheet, as discussion worksheets are not always designed to be
finished within an hour. However, this is totally fine since they are deliberately made slightly longer so they can serve
as resources you can use to practice, reinforce, and build upon concepts covered in lectures and homework.

1. Squaring SOCP Constraints

When considering a second-order cone (SOC) constraint, you might be tempted to square it to obtain a classical
convex quadratic constraint. This problem explores why that might not always work, and how to introduce
additional constraints to maintain equivalence and convexity.

(a) For x⃗ ∈ R2, consider the constraint
x1 − 2x2 ≥ ∥x⃗∥2 , (1)

and its squared counterpart
(x1 − 2x2)2 ≥ ∥x⃗∥2

2 . (2)

Are the two sets equivalent? Are they both convex?

Solution: The set defined by the first constraint is an SOC constraint and is thus convex. The second,
squared constraint

(x1 − 2x2)2 ≥ ∥x⃗∥2
2 (3)

can be expressed as
x2

1 − 4x1x2 + 4x2
2 ≥ x2

1 + x2
2, (4)

and thus
x2(4x1 − 3x2) ≤ 0. (5)

Plotting this region (red), we can immediately see that it is not convex:

and thus cannot possibly be equivalent to the first, unsquared constraint.

(b) What additional constraint must be imposed alongside the squared constraint to enforce the same feasible
set as the unsquared SOC constraint?

Solution: The initial SOC constraint x1 − 2x2 ≥ ∥x⃗∥2 implicitly imposes that x1 − 2x2 ≥ 0, a condition
that is lost when both sides of the inequality are squared. We can recover the same feasible set (purple) by
imposing this constraint (blue) alongside (x1 − 2x2)2 ≥ ∥x⃗∥2

2 (red):
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This principle holds in general; it is indeed possible to square an SOC constraint∥∥∥Ax⃗ + b⃗
∥∥∥

2
≤ c⃗⊤x⃗ + d, (6)

provided one takes care to include the implicit constraint that c⃗⊤x⃗ + d ≥ 0. The general SOC constraint is
thus equivalent to ∥∥∥Ax⃗ + b⃗

∥∥∥2

2
≤ (c⃗⊤x⃗ + d)2 (7)

0 ≤ c⃗⊤x⃗ + d. (8)

Note, however, that this is often of limited use, as certain convex optimization solvers (e.g., CVX) may

not accept constraints of the form
∥∥∥Ax⃗ + b⃗

∥∥∥2

2
− (c⃗⊤x⃗ + d)2 ≤ 0 in general, since, as shown above, the

difference of two convex quadratic functions may well be nonconvex. Although you may know that your
problem is convex — i.e., that you’ve provided the requisite additional constraints — your solver might not
be that smart!

2. Newton’s Method for Quadratic Functions

Give a symmetric positive defininte matrix Q ∈ Sn
++ and b ∈ Rn, consider minimizing

f(x) = 1
2 x⃗⊤Qx⃗ − b⃗⊤x⃗ (9)

Let x⃗⋆ denote the point at which f(x⃗) is minimized, and define B(x⃗⋆) as the ball centered at x⃗⋆ with unit ℓ2

norm:

B(x⃗⋆) = {x⃗ ∈ Rn : ∥x⃗ − x⃗⋆∥2 ≤ 1} (10)

Assume we use Newton’s method to minimize f :

x⃗k+1 = x⃗k − (∇2f(x⃗k))−1∇f(x⃗k) (11)

where the initial point is x⃗0 ∈ B(x⃗⋆).

For any k ∈ N, find

max
x⃗0∈B(x⃗⋆)

∥x⃗k − x⃗⋆∥2. (12)

Solution: For all x⃗, the Hessian is ∇2f(x⃗) = Q. Therefore, the update rule is

x⃗k+1 = x⃗k − Q−1(Qx⃗k − b⃗) = Q−1⃗b = x⃗⋆ (13)

So the optimal value of max
x⃗0∈B(x⃗⋆)

∥x⃗k − x⃗⋆∥2 is 1 for k = 0 and 0 for k ≥ 1
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3. Generalized Linear Models

A wide class of machine learning models (e.g. classification and regression) can be modelled in a common
framework called generalised linear models (GLMs). In this problem, we’ll talk about exponential families, gen-
eralized linear models and use Newton’s method to perform maximum likelihood estimation (MLEs). Consider
a special class of probability distributions known as exponential families whose density is of the form

f(y⃗; θ⃗) = ey⃗⊤θ⃗−b(θ⃗)f0(y⃗) (14)

where y⃗, θ⃗ ∈ Rn and b(θ⃗) = log
(∫

Rn ey⃗⊤θ⃗f0(y⃗)dy⃗
)

is the normalizing constant which ensures f is a probability
distribution over y⃗.

(a) (OPTIONAL) Show that b(θ⃗) is a convex function.

Solution: In a previous homework, you proved that the following function g(x1, . . . , xn) = log
(

n∑
i=1

exi

)
is convex. Certainly this implies that g(Ax⃗ + c⃗) is also convex for any A, c⃗. This can be seen as taking an
A and c⃗ which are infinite dimensional (n → ∞) matrix and vector respectively as then the sum can be
treated as an integral (recall Riemann sum). These are indexed by different values of y⃗ taking A(y⃗) = y⃗⊤

and c(y⃗) = log(f0(y⃗)). We won’t expect you to do infinite summations like this for the final but
provide it here to give an example of such proofs.
For more details on the above proof, recall the Riemann sum interpretation of integrals:

∫ b

a
f(x)dx =

limn→∞
∑n

i=1 f(xi)(xi − xi−1) by picking n points a = x0 < x1 < . . . < xn = b and making the
distance between the points tending to zero by taking infinitely many points in this interval. This idea also
works when the integral limits a and b are −∞ and ∞. We do the proof for dimension n = 1 and the proof
for higher dimensions is exactly similar. Now we see,

log
(∫ ∞

−∞
eyθdy

)
= log

(
lim

n→∞

n∑
i=1

eyiθ(yi − yi−1)
)

(15)

= log
(

lim
n→∞

n∑
i=1

eyiθ+log(yi−yi−1)

)
(16)

= lim
n→∞

log
(

n∑
i=1

eyiθ+log(yi−yi−1)

)
(17)

Now if g(x1, . . . , xn) = log
(

n∑
i=1

exi

)
is convex, so is any affine transformation and so the above is convex.

Convexity is preserved when taking limits so we get that b(θ⃗) is convex.

(b) We model θ⃗ = Xβ⃗ where X ∈ Rn×d is the data matrix. Under this parameterization of θ⃗, the exponential
family is called a generalized linear model. Prove that b(Xβ⃗) is convex in β⃗.
Solution: If b(θ⃗) is convex, so is any linear transformation so b(Xβ⃗) is convex in β⃗.

(c) For a given exponential family/GLM model, MLE estimation for a data matrix X and corresponding output
variables y⃗ ∈ Rn corresponds to solving the following maximization problem:

max
β⃗

f(y⃗; Xβ⃗) (18)

Prove that this maximization problem is equivalent to

min
β⃗

g(β⃗) := −y⃗⊤Xβ⃗ + b(Xβ⃗) (19)
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Show that this is a convex optimization problem. Which choice of b(·) recovers linear regression?

Solution: Consider the negative logarithm of f(y⃗; Xβ⃗)

− log
(

ey⃗⊤Xβ⃗−b(Xβ⃗)f0(y⃗)
)

= −y⃗⊤Xβ⃗ + b(Xβ⃗) − log(f0(y⃗)) (20)

Since the last term doesn’t depend on β⃗ we can ignore it. Since log(·) is an increasing function, maximizing
a function is same as maximizing logarithm of the function and hence equivalent to minimizing negative log
of the function and so we are done. We recover linear regression by taking b(x⃗) = 1

2 ∥x⃗∥2
2. An algorithm

for classification known as logistic regression can be recovered by taking b(x⃗) =
n∑

i=1
log(1 + exi).

(d) For the above convex minimization problem, find the undamped Newton’s method (with step size 1) update.
This update also goes by the name iteratively reweighted least squares (IRLS). Can you tell why? (For any
iterate β⃗ and the Newton update on β⃗ denoted by β⃗+, what optimization problem is β⃗+ the optimum of?)

Solution:

∇β⃗g(β⃗) = −X⊤y⃗ + X⊤∇b(Xβ⃗) (21)

∇2
β⃗
g(β⃗) = X⊤∇2b(Xβ⃗)X (22)

So the Newton update looks like

β⃗+ = β⃗ − (X⊤Hβ⃗X)−1(X⊤∇βb(β⃗) − X⊤y⃗) (23)

= (X⊤Hβ⃗X)−1X⊤Hβ⃗α⃗β⃗ (24)

where Hβ⃗ = ∇2
β⃗
b(Xβ⃗) and α⃗β⃗ = Xβ⃗ + H−1

β⃗
(y⃗ − ∇β⃗b(Xβ⃗)) You can verify that β⃗+ is the solution to

the following weighted least squares problem:

min
θ⃗

1
2∥H

1/2
β⃗

(Xθ⃗ − α⃗β⃗)∥2
2 (25)

so at each step we are solving a least squares like problem where we reweigh the observations by a PSD
matrix H

1/2
β⃗

and change the output vector to α⃗β⃗ . Note that both Hβ⃗ and α⃗β⃗ depend on the current iterate

β⃗. This is why this problem sometimes is a special case of a procedure known as iteratively reweighted
least squares(IRLS)
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