
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Midterm

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow the rules and do this
exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution:

2. Favorites (2 pts)

(a) (1 pts) What is your favorite book or book series?

Solution: Any answer is fine.

(b) (1 pts) Who is the speaker or writer of your favorite inspirational quote?

Solution: Any answer is fine.

3. SID (3 pts)

When the exam starts, write your SID at the top of every page. No extra time will be given for this task.
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4. Singular Values (10 pts)

(a) (4 pts) Suppose A ∈ R3×2 is a matrix such that A>A is given by

A>A =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

][
5 0
0 3

][
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

]
. (1)

What are the singular values of A? Justify your answer(s).

Solution: The singular values are the square roots of the eigenvalues of A>A. The eigenvalues of A>A are 5 and 3, since
those are the diagonal entries of the diagonal matrix in the spectral decomposition.

Therefore, the singular values of A are
√

5 and
√

3.

(b) (6 pts) Suppose that B ∈ R3×2 has singular values 0,
√

2, and
√

7. Let C =
[
B −B 3I3

]
∈ R3×7, where I3 ∈ R3×3 is

the 3 × 3 identity matrix. What are the singular values of C? Show your work and justify your answer(s).

HINT: Consider the matrix CC> ∈ R3×3.

Solution: To find the singular values of C, we consider CC> ∈ R3×3. Note that we consider this matrix rather than
C>C ∈ R7×7 because the former is smaller, and we get the following simplification:

CC> =
[
B −B 3I

] B

−B

3I

 = 2BB> + 9I. (2)

By the shift and scale properties of eigenvalues, the eigenvalues of CC> are 9 + 2× the eigenvalues of BB>. Since the
eigenvalues of BB> are the squared singular values of B, we know that the eigenvalues of BB> are 0, 2, and 7. Thus the
eigenvalues of CC> are 9, 13 and 23. Thus the nonzero singular values of C are 3,

√
13, and

√
23.
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5. Convex Functions (10 pts)

(a) (4 pts) Show that the function f : Rn → R given by f(~x) .= ‖~x‖2
2 is convex.

NOTE: You may use the gradient and Hessian of f , which were computed in lecture and homework, but the convexity of f

should be proved via “first principles” (zeroth/first/second order conditions, or other equivalent conditions for convexity).

Solution: The gradient and Hessian of f are

∇f(~x) = 2~x, ∇2f(~x) = 2I. (3)

The Hessian is positive semidefinite at each point ~x so f is convex.

(b) (6 pts) Is the function g : Rn → R given by g(~x) .= e‖~x‖2
2 convex? If g is convex, prove it; if g is not convex, give an

example ~x, ~y ∈ Rn and θ ∈ [0, 1] such that g(θ~x + (1 − θ)~y) > θg(~x) + (1 − θ)g(~y).
NOTE: One (short) solution to this problem does not use gradients or Hessians, but it is fine if yours does. In particular, the
gradient and Hessian of g were derived in homework; if you want to use these quantities, please derive them here. You may
use without proof the gradient and Hessian of f(~x) .= ‖~x‖2

2.

Solution: We give two solutions, one using properties of convex functions, and one which calculates the Hessian and shows
it is PSD (this is more “brute-force”).

Solution 1. Since the function x 7→ ex is monotonically increasing and convex, and ~x 7→ ‖~x‖2
2 is convex by part (a), g is a

composition of a monotonically increasing and convex function with a convex function, so it is convex.

Solution 2. We know that

∇g(~x) = [D exp
(

‖~x‖2
2

)
][D ‖~x‖2

2] (4)

= exp
(

‖~x‖2
2

)
· 2~x (5)

= 2e‖~x‖2
2~x. (6)

Therefore

∇2g(~x) = D(∇g)(~x) (7)

= D(2e‖~x‖2
2~x). (8)

The components of this Jacobian are

[∇2g(~x)]jk = ∂

∂xk
(2e‖~x‖2

2~x)j (9)

= ∂

∂xk
2e‖~x‖2

2xj (10)

= 2e‖~x‖2
2

∂xj

∂xk
+ 2xj

∂

∂xk
e‖~x‖2

2 (11)

= 2e‖~x‖2
2

∂xj

∂xk
+ 2xj [∇f(~x)]k (12)

= 2e‖~x‖2
2

∂xj

∂xk
+ 4xjxke‖~x‖2

2 (13)

This matrix forms
∇2g(~x) = 2e‖~x‖2

2 [I + 2~x~x>]. (14)

We can show that this is PSD: take any ~v ∈ Rn, then

~v>[∇2g(~x)]~v = 2e‖~x‖2
2~v>(I + 2~x~x>)~v = 2e‖~x‖2

2(~v>~v + 2(~x>~v)2) = 2e‖~x‖2
2(‖~v‖2

2 + 2(~x>~v)2) ≥ 0, (15)
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where the last inequality is because every single term in the expression is non-negative, so their product and sum must also
be non-negative. This proves that g is convex.
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6. Spectrahedron (7 pts)

Let F1, . . . , Fn ∈ Rm×m be symmetric matrices. Define the set S ⊆ Rn, known as a spectrahedron, by

S
.=

~x ∈ Rn

∣∣∣∣∣∣∣∣ ~x =


x1
...

xn

 ,

n∑
i=1

xiFi � 0

 . (16)

Here A � 0 means that A is symmetric PSD. Show that S is a convex set.

HINT: You can use without proof that convex combinations of symmetric PSD matrices are symmetric PSD.

Solution: Let ~x, ~y ∈ S, let θ ∈ [0, 1], and let ~z = θ~x + (1 − θ)~y. Then

n∑
i=1

ziFi =
n∑

i=1
(θxi + (1 − θ)yi)Fi (17)

= θ

n∑
i=1

xiFi︸ ︷︷ ︸
�0

+(1 − θ)
n∑

i=1
yiFi︸ ︷︷ ︸

�0

(18)

� 0 (19)

since the set of positive semidefinite matrices is closed under non-negative scalar multiples (like θ and 1 − θ) and addition.
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7. Gradient Descent on Quadratic (6 pts)

Let a, η ∈ R be such that η > 0 and 0 < a < 1/η. Define the function f : R → R by

f(x) .= 1
2ax2, for all x ∈ R. (20)

We run gradient descent on f with constant step size η and fixed initialization x0 = 1 to get iterates (xt)∞
t=0, i.e.,

xt+1
.= xt − η

df

dx
(xt) for all t ≥ 0, and x0 = 1. (21)

Complete the following tasks:

• compute the derivative of f (denoted df
dx or f ′);

• write the update rule for xt+1 in terms of xt, a, and η;

• write an expression for xt in terms of x0, a, η, and t;

• and compute the limit limt→∞ xt.

Show your work and justify your answer(s).

Solution: Notice that
df

dx
(x) = ax, (22)

so that
x − η∇f(x) = (1 − ηa)x. (23)

Thus we have
xt+1 = (1 − ηa)xt, (24)

and so
xt = (1 − ηa)tx0. (25)

Since x0 = 1, we have that xt = (1 − ηa)t for all t ≥ 0. Since a > 0, we have 1 − ηa < 1, so that xt = (1 − ηa)t → 0.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6
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8. Vector Calculus (14 pts)

(a) (8 pts) Let ~a ∈ Rn be a fixed vector, and b ∈ R be a fixed scalar. Compute the gradient and Hessian of the function
f : Rn → R given by

f(~x) .= sin(~a>~x − b). (26)

Show your work and justify your answer(s).

Solution: We use the chain rule. Write f(~x) = g(`(~x)) where g(x) = sin(x) and `(~x) = ~a>~x − b. Then to compute the
gradient, we have

∇f(~x) = [Df(~x)]> (27)

= [D(g ◦ `)(~x)]> (28)

= [(Dg(`(~x)))(D`(~x))]> (29)

= [cos(`(~x))~a>]> (30)

= cos(~a>~x − b) · ~a. (31)

To compute the Hessian, we have

∇2f(~x) = D(∇f)(~x) (32)

= D(cos(~a>~x − b) · ~a). (33)

At this point we do component-wise derivatives:

[∇2f(~x)]ij = [D(cos(~a>~x − b) · ~a)]ij (34)

= ∂(cos(~a>~x − b) · ~a)i

∂xj
(35)

= [D(cos(~a>~x − b) · ~a)]ij (36)

= ∂(cos(~a>~x − b) · ai)
∂xj

(37)

= ∂(cos(~a>~x − b))
∂xj

· ai (38)

= ∂(cos(~a>~x − b))
∂(~a>~x − b) · ∂(~a>~x − b)

∂xj
· ai (39)

= − sin(~a>~x − b) · ai · aj . (40)

This gives
∇2f(~x) = − sin(~a>~x − b)~a~a>. (41)

(b) (6 pts) Let ~u ∈ Rn be a fixed vector. Compute the Jacobian of the function ~f : Rn → Rn given by

~f(~x) .= (~u>~x)~u. (42)

Show your work and justify your answer(s).

HINT: One (short) solution to this problem starts by rewriting ~f(~x) as a matrix-vector product, but you can do this problem
any way you want.
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Solution: Note that we can write the projection as

~f(~x) = ~u~u>~x (43)

which is just a constant matrix times the input vector ~x, so its Jacobian is just the matrix

D ~f(~x) = ~u~u>. (44)
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9. Factorizations of PSD Matrices (16 pts)

Let k, n be positive integers, with k ≤ n. In this problem, we prove that A ∈ Rn×n is a symmetric PSD matrix of rank k if and
only if it can be written as A = PP > for some matrix P ∈ Rn×k which has full column rank.

(a) (8 pts) Let A ∈ Rn×n be a symmetric PSD matrix with rank k. Prove that there exists another matrix P ∈ Rn×k with
full column rank, i.e., rank(P ) = k, such that A = PP >.
HINT: Recall that A is a square and symmetric n × n matrix, while P is a tall n × k matrix.

Solution: Let A =
∑k

i=1 λi~vi~v
>
i , and let P =

[√
λ1~v1 . . .

√
λk~vk

]
. Then that PP > =

∑k
i=1 λi~vi~v

>
i = A, and P has

full column rank because it has orthogonal columns.

(b) (8 pts) Let P ∈ Rn×k be a matrix with full column rank, i.e., rank(P ) = k. Prove that if we define A
.= PP >, then

A ∈ Rn×n is a symmetric PSD matrix of rank k.
HINT: We know two ways to show that rank(A) = k. One uses the rank-nullity theorem and that N (B>B) = N (B) for any
matrix B in order to compute the rank of A = PP >. The other uses the SVD of P .

Solution: Indeed A is symmetric because

A> = (PP >)> = (P >)>(P >) = PP >. (45)

To show that A is positive semidefinite, for each ~x ∈ Rn we have

~x>A~x = ~x>PP >~x =
∥∥P >~x

∥∥2
2 ≥ 0. (46)

We now show that rank(A) = k. Indeed as a sum of k dyads it is easy to show that rank(A) ≤ k, but this does not prove
that the quantities are equal, deserving partial credit. We give two proofs here.

Proof 1.

A simple proof is by dimension-counting and the rank-nullity theorem:

rank(PP >) = n − dim(N (PP >)) (47)

= n − dim(N (P >)) (48)

= n − (n − dim(R(P >))) (49)

= n − (n − rank(P >)) (50)

= n − (n − rank(P )) (51)

= n − (n − k) (52)

= k. (53)

Here we know that N (PP >) = N (P >) by the more general statement that for any matrix B we have N (B) = N (B>B)
(and take B = P >).

Proof 2.

A more quantitative proof uses the (compact) SVD, writing P = UkΣkV >
k , where Uk ∈ Rn×k and Vk ∈ Rk×k have

orthonormal columns and Σk ∈ Rk×k is diagonal with positive entries. (We may do this precisely because P has full column
rank, meaning that it has rank k). Then

PP > = (UkΣkV >
k )(UkΣkV >

k )> = UkΣkV >
k VkΣ>

k U>
k = UkΣkΣ>

k U>
k = UkΣ2

kU>
k (54)

which is a rank-k matrix since Σ2
k has k nonzero entries on its diagonal.
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10. `p Norms (8 pts)

Let n be a positive integer. Recall that for 1 ≤ p ≤ ∞ the `p norm on Rn is defined as

‖~x‖p

.=

(
∑n

i=1 |xi|p)1/p if 1 ≤ p < ∞

maxi∈{1,...,n} |xi| if p = ∞,
for all ~x =


x1
...

xn

 ∈ Rn. (55)

Let A ∈ Rm×n be a matrix. Let ~ri ∈ Rn be the ith row of A, i.e.,

A =


~r>

1
...

~r>
m

 . (56)

Prove the identity
max
~v∈Rn

‖~v‖2=1

‖A~v‖∞ = max
i∈{1,...,m}

‖~ri‖2 . (57)

HINT: The Cauchy-Schwarz inequality may be useful. Think about when equality holds.

Solution: For any ~v ∈ Rn we have

‖A~v‖∞ = max
i∈{1,...,m}

|(A~v)i| (58)

= max
i∈{1,...,m}

∣∣~r>
i ~v
∣∣ (59)

≤ max
i∈{1,...,m}

‖~v‖2 ‖~ri‖2 (60)

= ‖~v‖2 max
i∈{1,...,m}

‖~ri‖2 , (61)

where the inequality step is by Cauchy-Schwarz. Therefore

‖A‖2,∞ = max
~v∈Rn

‖~v‖2=1

‖A~v‖∞ (62)

≤ max
~v∈Rn

‖~v‖2=1

‖~v‖2 max
i∈{1,...,m}

‖~ri‖2 (63)

= max
i∈{1,...,m}

‖~ri‖2 . (64)

This upper bound is always achievable. Let i? ∈ argmaxi∈{1,...,m} ‖~ri‖2. Then, a choice of

~v = ~ri?

‖~ri?‖2
(65)

achieves the upper bound. We derive this by noting that we just need to make the above invocation of Cauchy-Schwarz tight, which occurs
when ~v is parallel to ~ri? .
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11. PCA and Regression (34 pts)

(a) (4 pts) Given the following plot of data inR2 (i.e., each dot is a data point inR2) and candidate unit vectors~v1, ~v2, ~v3, ~v4 ∈ R2,
identify the candidate vectors which could be the first principal component and second principal component of the
data (and specify which is which). You do not need to show your work for this subpart.

~v1

~v2
~v3

~v4

Solution: The vector ~v3 is the first principal component, since it aligns the most with the largest degree of variation in the
data; alternatively, projecting onto it gives the minimum sum of squared errors, across all unit vectors. Then ~v2 is the second
principal component since it is the only vector orthogonal to ~v3.

(b) (6 pts) Suppose we have pairs of data (~x1, y1), . . . , (~xn, yn) ∈ Rd ×R, where n > d. As usual, we arrange these data points
into a matrix and vector, i.e.,

X =


~x>

1
...

~x>
n

 ∈ Rn×d, ~y =


y1
...

yn

 ∈ Rn. (66)

Assume that X is centered, i.e., each column has mean zero: (1/n)
∑n

i=1 ~xi = ~0d, where~0d is the zero vector inRd. Suppose
that X has compact SVD given by X = UdΣdV >

d where

Ud =
[
~u1, . . . , ~ud

]
∈ Rn×d, Vd =

[
~v1, . . . , ~vd

]
∈ Rd×d, Σd =


σ1

. . .
σd

 ∈ Rd×d (67)

where σ1 > σ2 > · · · > σd > 0. From this SVD, identify the top k principal components of the data {~x1, . . . , ~xn} ⊆ Rd,
where k ≤ d. You do not need to show your work for this subpart.

HINT: Recall that the first principal component solves the optimization problem argmax
~w∈Rd : ‖ ~w‖2=1

~w>X>X ~w.

Solution: Recall that the sample covariance is

1
n

n∑
i=1

~xi~x
>
i = 1

n
X>X. (68)
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The top k principal components are the top k eigenvectors of the sample covariance, given by

1
n

X>X = Vr

(
Σ2

r

n

)
V >

r . (69)

These principal components are then the first k columns of Vr, namely ~v1, . . . , ~vk.

(c) (4 pts) Suppose that P =
[
~p1, . . . , ~pk

]
∈ Rd×k is a matrix with columns ~pj . Let Z = XP , and let the entries of Z be zij ,

i.e.,

Z =


z11 · · · z1k

...
. . .

...
zn1 · · · znk

 ∈ Rn×k. (70)

Give an expression for zij in terms of ~xi and ~pj . You do not need to show your work for this subpart.

Solution: We have

Z = XP (71)

=⇒ Z> = P >X> (72)

=⇒
[
~z1 · · · ~zn

]
= P >

[
~x1 · · · ~xn

]
=
[
P >~x1 · · · P >~xn

]
. (73)

Then we have

~zi = P >~xi =


~p>

1
...

~p>
k

 ~xi =


~p>

1 ~xi

...
~p>

k ~xi

 . (74)

(d) (10 pts) Define the matrices Uk, Vk, and Σk as

Uk =
[
~u1, . . . , ~uk

]
∈ Rn×k, Vk =

[
~v1, . . . , ~vk

]
∈ Rd×k, Σk =


σ1

. . .
σk

 ∈ Rk×k. (75)

Suppose that P = Vk, so that Z = XVk. Let λ ≥ 0, and let ~β? ∈ Rk solve the ridge regression problem

~β? .= argmin
~β∈Rk

[
‖Z~β − ~y‖2

2 + λ‖~β‖2
2

]
. (76)

Show that:
~β? = (Σ2

k + λIk)−1ΣkU>
k ~y, (77)

where Ik ∈ Rk×k is the k × k identity matrix.

Solution: We give two approaches, one which saves a lot of work by evaluating terms in an optimal order, and another which
is more brute-force.

Approach 1.

To compute ~β?, we have

Z = XP (78)

= XVk (79)

= UdΣdV >
d Vk (80)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12



EECS 127/227AT Midterm

Print your student ID:

2024-03-07 21:24:39-08:00

= UdΣd

[
V >

k

V >
d−k

]
Vk (81)

= UdΣd

[
V >

k Vk

V >
d−kVk

]
(82)

= UdΣd

[
Ik

0(d−k)×k

]
(83)

=
[
Uk Ud−k

] [ Σk 0k×(d−k)

0(d−k)×k Σd−k

][
Ik

0(d−k)×k

]
(84)

= UkΣk, (85)

where Ud−k =
[
~uk+1, . . . , ~ud

]
, Vd−k =

[
~vk+1, . . . , ~vd

]
, and Σd−k =


σk+1

. . .
σd

. Then
~β? = (Z>Z + λIk)−1Z>~y (86)

= ((UkΣk)>(UkΣk) + λI)−1(UkΣk)>~y (87)

= (Σ>
k Σk + λIk)−1Σ>

k U>
k ~y (88)

= (Σ2
k + λIk)−1ΣkU>

k ~y. (89)

Approach 2.

We start by computing

~β? = (Z>Z + λI)−1Z>~y (90)

= ((XVk)>(XVk) + λIk)−1(XVk)>~y (91)

= (V >
k X>XVk + λIk)−1V >

k X>~y. (92)

Now we plug in X = UdΣdV >
d , and obtain

~β? = (V >
k (UdΣdV >

d )>(UdΣdV >
d )Vk + λIk)−1V >

k (UdΣdV >
d )>~y (93)

= (V >
k VdΣdU>

d UdΣdV >
d Vk + λIk)−1V >

k VdΣdU>
d ~y (94)

= (V >
k VdΣ2

dV >
d Vk + λIk)−1V >

k VdΣdU>
d ~y. (95)

As in the previous solution, we write

V >
d Vk =

[
V >

k

V >
d−k

]
Vk =

[
V >

k Vk

V >
d−kVk

]
=
[

Ik

0(d−k)×k

]
. (96)

This obtains

~β? =
([

Ik 0k×(d−k)

]
Σ2

d

[
Ik

0(d−k)×k

]
+ λIk

)−1 [
Ik 0k×(d−k)

]
ΣdU>

d ~y (97)

=

[Ik 0k×(d−k)

] [ Σk 0k×(d−k)

0(d−k)×k Σd−k

]2 [
Ik

0(d−k)×k

]
+ λIk

−1 [
Ik 0k×(d−k)

]
ΣdU>

d ~y (98)
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=
([

Ik 0k×(d−k)

] [ Σ2
k 0k×(d−k)

0(d−k)×k Σ2
d−k

][
Ik

0(d−k)×k

]
+ λIk

)−1 [
Ik 0k×(d−k)

]
ΣdU>

d ~y (99)

=
(
Σ2

k + λIk

)−1
[
Ik 0k×(d−k)

]
ΣdU>

d ~y (100)

=
(
Σ2

k + λIk

)−1
[
Ik 0k×(d−k)

] [ Σk 0k×(d−k)

0(d−k)×k Σd−k

] [
Uk Ud−k

]>
~y (101)

=
(
Σ2

k + λIk

)−1 ΣkU>
k ~y. (102)

Note: The quantities (V >
k MVk)−1 and V >

k M−1Vk are not equal in general, because Vk is not square and not invertible, and
so we cannot use the false identity (V >

k MVk)−1 = V >
k M−1Vk expression to simplify any calculations.

(e) (10 pts) Let ~α? ∈ Rd solve the original ridge regression problem, i.e.,

~α? .= argmin
~α∈Rd

[
‖X~α − ~y‖2

2 + λ‖~α‖2
2
]

= Vd(Σ2
d + λId)−1ΣdU>

d ~y, (103)

where Id ∈ Rd×d is the d × d identity matrix. (You can assume without proof that the above equality is true.)

Compute
‖X~α? − Z~β?‖2

2, (104)

in terms of the vectors (~ui)d
i=1 and ~y, and the scalars (σi)d

i=1 and λ. Show your work and justify your answer(s).

Solution: We use the compact SVD, though solutions can use any SVD (as long as the dimensions are kept correct). We have

X~α? = (UdΣdV >
d )(Vd(Σ2

d + λI)−1ΣdU>
d ~y) (105)

= UdΣdV >
d Vd(Σ2

d + λI)−1ΣdU>
d ~y (106)

= UdΣd(Σ2
d + λI)−1ΣdU>

d ~y (107)

= Ud


σ2

1
σ2

1 + λ
. . .

σ2
d

σ2
d + λ

U>
d ~y (108)

=
d∑

i=1

σ2
i

σ2
i + λ

~ui~u
>
i ~y (109)

=
d∑

i=1

σ2
i

σ2
i + λ

(~u>
i ~y)~ui (110)

Z~β? = (UkΣk)((Σ2
k + λI)−1ΣkU>

k ~y) (111)

= UkΣk(Σ2
k + λI)−1ΣkU>

k ~y (112)

= Uk


σ2

1
σ2

1 + λ
. . .

σ2
k

σ2
k + λ

U>
k ~y (113)

=
k∑

i=1

σ2
i

σ2
i + λ

~ui~u
>
i ~y (114)
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=
k∑

i=1

σ2
i

σ2
i + λ

(~u>
i ~y)~ui. (115)

Thus

X~α? − Z~β? =
d∑

i=k+1

σ2
i

σ2
i + λ

(~u>
i ~y)~ui (116)

‖X~α? − Z~β?‖2
2 =

d∑
i=k+1

(
σ2

i

σ2
i + λ

)2

(~u>
i ~y)2. (117)

Bonus 1: An alternative, equally valid way to compute Z~β? is as follows:

Z~β? = XVk
~β? (118)

= (UdΣdV >
d )Vk(Σ2

k + λIk)−1ΣkU>
k ~y (119)

= UdΣd(V >
d Vk)(Σ2

k + λIk)−1ΣkU>
k ~y (120)

=
[
Uk Ud−k

] [ Σk 0k×(d−k)

0(d−k)×k Σd−k

][
Ik

0(d−k)×k

]
(Σ2

k + λIk)−1ΣkU>
k ~y (121)

= UkΣk(Σ2
k + λIk)−1ΣkU>

k ~y. (122)

Bonus 2: to compute ~α? in the first place, we used a similar calculation to part (d), obtaining

~α? = (X>X + λI)−1X>~y (123)

= ((UdΣdV >
d )>(UdΣdV >

d ) + λI)−1(UdΣdV >
d )>~y (124)

= (VdΣ>
d U>

d UdΣdV >
d + λI)−1VdΣ>

d U>
d ~y (125)

= (VdΣ2
dV >

d + λI)−1VdΣdU>
d (126)

= (Vd(Σ2
d + λI)V >

d )−1VdΣdU>
d (127)

= Vd(Σ2
d + λI)−1V >

d VdΣdU>
d (128)

= Vd(Σ2
d + λI)−1ΣdU>

d ~y. (129)
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