1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution:

2. Favorites (2 pts)

- (a) (1 pts) What is your favorite book or book series?Solution: Any answer is fine.
- (b) (1 pts) Who is the speaker or writer of your favorite inspirational quote?Solution: Any answer is fine.
- 3. SID (3 pts)

When the exam starts, write your SID at the top of every page. No extra time will be given for this task.

4. Singular Values (10 pts)

(a) (4 pts) Suppose $A \in \mathbb{R}^{3 \times 2}$ is a matrix such that $A^{\top}A$ is given by

$$A^{\top}A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$
 (1)

What are the singular values of A? Justify your answer(s).

Solution: The singular values are the square roots of the eigenvalues of $A^{\top}A$. The eigenvalues of $A^{\top}A$ are 5 and 3, since those are the diagonal entries of the diagonal matrix in the spectral decomposition.

Therefore, the singular values of A are $\sqrt{5}$ and $\sqrt{3}$.

(b) (6 pts) Suppose that $B \in \mathbb{R}^{3 \times 2}$ has singular values $0, \sqrt{2}$, and $\sqrt{7}$. Let $C = \begin{bmatrix} B & -B & 3I_3 \end{bmatrix} \in \mathbb{R}^{3 \times 7}$, where $I_3 \in \mathbb{R}^{3 \times 3}$ is the 3×3 identity matrix. What are the singular values of *C*? Show your work and justify your answer(s). *HINT: Consider the matrix* $CC^{\top} \in \mathbb{R}^{3 \times 3}$.

Solution: To find the singular values of C, we consider $CC^{\top} \in \mathbb{R}^{3\times 3}$. Note that we consider this matrix rather than $C^{\top}C \in \mathbb{R}^{7\times 7}$ because the former is smaller, and we get the following simplification:

$$CC^{\top} = \begin{bmatrix} B & -B & 3I \end{bmatrix} \begin{bmatrix} B \\ -B \\ 3I \end{bmatrix} = 2BB^{\top} + 9I.$$
⁽²⁾

By the shift and scale properties of eigenvalues, the eigenvalues of CC^{\top} are $9 + 2 \times$ the eigenvalues of BB^{\top} . Since the eigenvalues of BB^{\top} are the squared singular values of B, we know that the eigenvalues of BB^{\top} are 0, 2, and 7. Thus the eigenvalues of CC^{\top} are 9, 13 and 23. Thus the nonzero singular values of C are 3, $\sqrt{13}$, and $\sqrt{23}$.

5. Convex Functions (10 pts)

(a) (4 pts) Show that the function f: ℝⁿ → ℝ given by f(x) = ||x||₂² is convex. *NOTE*: You may use the gradient and Hessian of f, which were computed in lecture and homework, but the convexity of f should be proved via "first principles" (zeroth/first/second order conditions, or other equivalent conditions for convexity).
Solution: The gradient and Hessian of f are

$$\nabla f(\vec{x}) = 2\vec{x}, \qquad \nabla^2 f(\vec{x}) = 2I. \tag{3}$$

The Hessian is positive semidefinite at each point \vec{x} so f is convex.

(b) (6 pts) Is the function $g: \mathbb{R}^n \to \mathbb{R}$ given by $g(\vec{x}) \doteq e^{\|\vec{x}\|_2^2}$ convex? If g is convex, prove it; if g is not convex, give an example $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $\theta \in [0, 1]$ such that $g(\theta \vec{x} + (1 - \theta)\vec{y}) > \theta g(\vec{x}) + (1 - \theta)g(\vec{y})$.

NOTE: One (short) solution to this problem does not use gradients or Hessians, but it is fine if yours does. In particular, the gradient and Hessian of g were derived in homework; if you want to use these quantities, please derive them here. You may use without proof the gradient and Hessian of $f(\vec{x}) \doteq ||\vec{x}||_2^2$.

Solution: We give two solutions, one using properties of convex functions, and one which calculates the Hessian and shows it is PSD (this is more "brute-force").

Solution 1. Since the function $x \mapsto e^x$ is monotonically increasing and convex, and $\vec{x} \mapsto \|\vec{x}\|_2^2$ is convex by part (a), g is a composition of a monotonically increasing and convex function with a convex function, so it is convex.

Solution 2. We know that

$$\nabla g(\vec{x}) = [D \exp\left(\|\vec{x}\|_{2}^{2}\right)][D \|\vec{x}\|_{2}^{2}]$$
(4)

$$= \exp\left(\left\|\vec{x}\right\|_{2}^{2}\right) \cdot 2\vec{x} \tag{5}$$

$$=2e^{\|\vec{x}\|_{2}^{2}}\vec{x}.$$
 (6)

Therefore

$$\nabla^2 g(\vec{x}) = D(\nabla g)(\vec{x}) \tag{7}$$

$$= D(2e^{\|\vec{x}\|_{2}^{2}}\vec{x}).$$
(8)

The components of this Jacobian are

$$[\nabla^2 g(\vec{x})]_{jk} = \frac{\partial}{\partial x_k} (2e^{\|\vec{x}\|_2^2} \vec{x})_j \tag{9}$$

$$= \frac{\partial}{\partial x_k} 2e^{\|\vec{x}\|_2^2} x_j \tag{10}$$

$$=2e^{\|\vec{x}\|_{2}^{2}}\frac{\partial x_{j}}{\partial x_{k}}+2x_{j}\frac{\partial}{\partial x_{k}}e^{\|\vec{x}\|_{2}^{2}}$$
(11)

$$= 2e^{\|\vec{x}\|_2^2} \frac{\partial x_j}{\partial x_k} + 2x_j [\nabla f(\vec{x})]_k$$
(12)

$$= 2e^{\|\vec{x}\|_{2}^{2}} \frac{\partial x_{j}}{\partial x_{k}} + 4x_{j}x_{k}e^{\|\vec{x}\|_{2}^{2}}$$
(13)

This matrix forms

$$\nabla^2 g(\vec{x}) = 2e^{\|\vec{x}\|_2^2} [I + 2\vec{x}\vec{x}^\top].$$
(14)

We can show that this is PSD: take any $\vec{v} \in \mathbb{R}^n$, then

$$\vec{v}^{\top}[\nabla^2 g(\vec{x})]\vec{v} = 2e^{\|\vec{x}\|_2^2} \vec{v}^{\top} (I + 2\vec{x}\vec{x}^{\top})\vec{v} = 2e^{\|\vec{x}\|_2^2} (\vec{v}^{\top}\vec{v} + 2(\vec{x}^{\top}\vec{v})^2) = 2e^{\|\vec{x}\|_2^2} (\|\vec{v}\|_2^2 + 2(\vec{x}^{\top}\vec{v})^2) \ge 0,$$
(15)

where the last inequality is because every single term in the expression is non-negative, so their product and sum must also be non-negative. This proves that g is convex.

PRINT your student ID: _____

EECS 127/227AT Midterm

2024-03-07 21:24:39-08:00

6. Spectrahedron (7 pts)

Let $F_1, \ldots, F_n \in \mathbb{R}^{m \times m}$ be symmetric matrices. Define the set $S \subseteq \mathbb{R}^n$, known as a *spectrahedron*, by

$$S \doteq \left\{ \vec{x} \in \mathbb{R}^n \, \middle| \, \vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \sum_{i=1}^n x_i F_i \succeq 0 \right\}.$$
(16)

Here $A \succeq 0$ means that A is symmetric PSD. Show that S is a convex set.

HINT: You can use without proof that convex combinations of symmetric PSD matrices are symmetric PSD.

Solution: Let $\vec{x}, \vec{y} \in S$, let $\theta \in [0, 1]$, and let $\vec{z} = \theta \vec{x} + (1 - \theta) \vec{y}$. Then

$$\sum_{i=1}^{n} z_i F_i = \sum_{i=1}^{n} (\theta x_i + (1-\theta)y_i) F_i$$
(17)

$$=\theta \sum_{i=1}^{n} x_i F_i + (1-\theta) \sum_{i=1}^{n} y_i F_i$$

$$(18)$$

$$\succeq 0$$
 (19)

since the set of positive semidefinite matrices is closed under non-negative scalar multiples (like θ and $1 - \theta$) and addition.

7. Gradient Descent on Quadratic (6 pts)

Let $a, \eta \in \mathbb{R}$ be such that $\eta > 0$ and $0 < a < 1/\eta$. Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) \doteq \frac{1}{2}ax^2, \quad \text{for all } x \in \mathbb{R}.$$
 (20)

We run gradient descent on f with constant step size η and fixed initialization $x_0 = 1$ to get iterates $(x_t)_{t=0}^{\infty}$, i.e.,

$$x_{t+1} \doteq x_t - \eta \frac{\mathrm{d}f}{\mathrm{d}x}(x_t) \qquad \text{for all } t \ge 0, \qquad \text{and} \quad x_0 = 1.$$
(21)

Complete the following tasks:

- compute the derivative of f (denoted $\frac{df}{dx}$ or f');
- write the update rule for x_{t+1} in terms of x_t , a, and η ;
- write an expression for x_t in terms of x_0 , a, η , and t;
- and compute the limit $\lim_{t\to\infty} x_t$.

Show your work and justify your answer(s).

Solution: Notice that

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x) = ax,\tag{22}$$

so that

$$x - \eta \nabla f(x) = (1 - \eta a)x. \tag{23}$$

Thus we have

$$x_{t+1} = (1 - \eta a)x_t, \tag{24}$$

and so

$$x_t = (1 - \eta a)^t x_0. (25)$$

Since $x_0 = 1$, we have that $x_t = (1 - \eta a)^t$ for all $t \ge 0$. Since a > 0, we have $1 - \eta a < 1$, so that $x_t = (1 - \eta a)^t \to 0$.

PRINT your student ID:

EECS 127/227AT Midterm

8. Vector Calculus (14 pts)

(a) (8 pts) Let $\vec{a} \in \mathbb{R}^n$ be a fixed vector, and $b \in \mathbb{R}$ be a fixed scalar. Compute the gradient and Hessian of the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(\vec{x}) \doteq \sin(\vec{a} \mid \vec{x} - b). \tag{26}$$

Show your work and justify your answer(s).

Solution: We use the chain rule. Write $f(\vec{x}) = g(\ell(\vec{x}))$ where $g(x) = \sin(x)$ and $\ell(\vec{x}) = \vec{a}^{\top}\vec{x} - b$. Then to compute the gradient, we have

$$\nabla f(\vec{x}) = [Df(\vec{x})]^{\top} \tag{27}$$

$$= [D(g \circ \ell)(\vec{x})]^{\top}$$
(28)

$$= [(Dg(\ell(\vec{x})))(D\ell(\vec{x}))]^{\top}$$
⁽²⁹⁾

$$= [\cos(\ell(\vec{x}))\vec{a}^{\top}]^{\top}$$
(30)

$$=\cos(\vec{a}^{\dagger}\vec{x}-b)\cdot\vec{a}.$$
(31)

To compute the Hessian, we have

$$\nabla^2 f(\vec{x}) = D(\nabla f)(\vec{x}) \tag{32}$$

$$= D(\cos(\vec{a} \cdot \vec{x} - b) \cdot \vec{a}). \tag{33}$$

At this point we do component-wise derivatives:

$$[\nabla^2 f(\vec{x})]_{ij} = [D(\cos(\vec{a}^\top \vec{x} - b) \cdot \vec{a})]_{ij}$$
(34)

$$=\frac{\partial(\cos(\vec{a}\,|\,\vec{x}-b)\cdot\vec{a})_i}{\partial x} \tag{35}$$

$$= [D(\cos(\vec{a}^{\top}\vec{x} - b) \cdot \vec{a})]_{ij}$$
(36)

$$=\frac{\partial(\cos(\vec{a} \cdot \vec{x} - b) \cdot a_i)}{\partial x_j} \tag{37}$$

$$=\frac{\partial(\cos(\vec{a}^{\top}\vec{x}-b))}{\partial x_{i}}\cdot a_{i} \tag{38}$$

$$= \frac{\partial(\cos(\vec{a}^{\top}\vec{x}-b))}{\partial(\vec{a}^{\top}\vec{x}-b)} \cdot \frac{\partial(\vec{a}^{\top}\vec{x}-b)}{\partial x_j} \cdot a_i$$
(39)

$$= -\sin(\vec{a}^{\top}\vec{x} - b) \cdot a_i \cdot a_j. \tag{40}$$

This gives

$$\nabla^2 f(\vec{x}) = -\sin(\vec{a}^\top \vec{x} - b)\vec{a}\vec{a}^\top.$$
(41)

(b) (6 pts) Let $\vec{u} \in \mathbb{R}^n$ be a fixed vector. Compute the Jacobian of the function $\vec{f} : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\vec{f}(\vec{x}) \doteq (\vec{u}^{\top}\vec{x})\vec{u}. \tag{42}$$

Show your work and justify your answer(s).

HINT: One (short) solution to this problem starts by rewriting $\vec{f}(\vec{x})$ *as a matrix-vector product, but you can do this problem any way you want.*

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.

Solution: Note that we can write the projection as

$$\vec{f}(\vec{x}) = \vec{u}\vec{u}^{\top}\vec{x} \tag{43}$$

which is just a constant matrix times the input vector \vec{x} , so its Jacobian is just the matrix

$$D\vec{f}(\vec{x}) = \vec{u}\vec{u}^{\top}.$$
(44)

9. Factorizations of PSD Matrices (16 pts)

Let k, n be positive integers, with $k \leq n$. In this problem, we prove that $A \in \mathbb{R}^{n \times n}$ is a symmetric PSD matrix of rank k if and only if it can be written as $A = PP^{\top}$ for some matrix $P \in \mathbb{R}^{n \times k}$ which has full column rank.

(a) (8 pts) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric PSD matrix with rank k. Prove that there exists another matrix $P \in \mathbb{R}^{n \times k}$ with full column rank, i.e., rank(P) = k, such that $A = PP^{\top}$.

HINT: Recall that A is a square and symmetric $n \times n$ matrix, while P is a tall $n \times k$ matrix.

Solution: Let $A = \sum_{i=1}^{k} \lambda_i \vec{v}_i \vec{v}_i^{\top}$, and let $P = \begin{bmatrix} \sqrt{\lambda_1} \vec{v}_1 & \dots & \sqrt{\lambda_k} \vec{v}_k \end{bmatrix}$. Then that $PP^{\top} = \sum_{i=1}^{k} \lambda_i \vec{v}_i \vec{v}_i^{\top} = A$, and P has full column rank because it has orthogonal columns.

(b) (8 pts) Let $P \in \mathbb{R}^{n \times k}$ be a matrix with full column rank, i.e., rank(P) = k. Prove that if we define $A \doteq PP^{\top}$, then $A \in \mathbb{R}^{n \times n}$ is a symmetric PSD matrix of rank k.

HINT: We know two ways to show that $\operatorname{rank}(A) = k$. One uses the rank-nullity theorem and that $\mathcal{N}(B^{\top}B) = \mathcal{N}(B)$ for any matrix B in order to compute the rank of $A = PP^{\top}$. The other uses the SVD of P.

Solution: Indeed A is symmetric because

$$A^{\top} = (PP^{\top})^{\top} = (P^{\top})^{\top} (P^{\top}) = PP^{\top}.$$
(45)

To show that A is positive semidefinite, for each $\vec{x} \in \mathbb{R}^n$ we have

$$\vec{x}^{\top} A \vec{x} = \vec{x}^{\top} P P^{\top} \vec{x} = \left\| P^{\top} \vec{x} \right\|_{2}^{2} \ge 0.$$
 (46)

We now show that rank(A) = k. Indeed as a sum of k dyads it is easy to show that $rank(A) \le k$, but this does not prove that the quantities are equal, deserving partial credit. We give two proofs here.

Proof 1.

A simple proof is by dimension-counting and the rank-nullity theorem:

$$\operatorname{rank}(PP^{\top}) = n - \dim(\mathcal{N}(PP^{\top})) \tag{47}$$

$$= n - \dim(\mathcal{N}(P^{\top})) \tag{48}$$

$$= n - (n - \dim(\mathcal{R}(P^{\top}))) \tag{49}$$

$$= n - (n - \operatorname{rank}(P^{\top})) \tag{50}$$

$$= n - (n - \operatorname{rank}(P)) \tag{51}$$

$$= n - (n - k) \tag{52}$$

=k. (53)

Here we know that $\mathcal{N}(PP^{\top}) = \mathcal{N}(P^{\top})$ by the more general statement that for any matrix B we have $\mathcal{N}(B) = \mathcal{N}(B^{\top}B)$ (and take $B = P^{\top}$).

Proof 2.

A more quantitative proof uses the (compact) SVD, writing $P = U_k \Sigma_k V_k^{\top}$, where $U_k \in \mathbb{R}^{n \times k}$ and $V_k \in \mathbb{R}^{k \times k}$ have orthonormal columns and $\Sigma_k \in \mathbb{R}^{k \times k}$ is diagonal with positive entries. (We may do this precisely because P has full column rank, meaning that it has rank k). Then

$$PP^{\top} = (U_k \Sigma_k V_k^{\top}) (U_k \Sigma_k V_k^{\top})^{\top} = U_k \Sigma_k V_k^{\top} V_k \Sigma_k^{\top} U_k^{\top} = U_k \Sigma_k \Sigma_k^{\top} U_k^{\top} = U_k \Sigma_k^2 U_k^{\top}$$
(54)

which is a rank-k matrix since Σ_k^2 has k nonzero entries on its diagonal.

10. ℓ^p Norms (8 pts)

Let n be a positive integer. Recall that for $1 \le p \le \infty$ the ℓ^p norm on \mathbb{R}^n is defined as

$$\|\vec{x}\|_{p} \doteq \begin{cases} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} & \text{if } 1 \le p < \infty \\ \max_{i \in \{1,\dots,n\}} |x_{i}| & \text{if } p = \infty, \end{cases} \quad \text{for all } \vec{x} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \in \mathbb{R}^{n}.$$

$$(55)$$

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Let $\vec{r_i} \in \mathbb{R}^n$ be the i^{th} row of A, i.e.,

$$A = \begin{bmatrix} \vec{r}_1^{\mathsf{T}} \\ \vdots \\ \vec{r}_m^{\mathsf{T}} \end{bmatrix}.$$
 (56)

Prove the identity

$$\max_{\substack{\vec{v} \in \mathbb{R}^n \\ \|\vec{v}\|_2 = 1}} \|A\vec{v}\|_{\infty} = \max_{i \in \{1, \dots, m\}} \|\vec{r_i}\|_2.$$
(57)

HINT: The Cauchy-Schwarz inequality may be useful. Think about when equality holds.

Solution: For any $\vec{v} \in \mathbb{R}^n$ we have

$$\|A\vec{v}\|_{\infty} = \max_{i \in \{1,\dots,m\}} |(A\vec{v})_i|$$
(58)

$$= \max_{i \in \{1,\dots,m\}} \left| \vec{r}_i^\top \vec{v} \right| \tag{59}$$

$$\leq \max_{i \in \{1, \dots, m\}} \|\vec{v}\|_2 \, \|\vec{r}_i\|_2 \tag{60}$$

$$= \|\vec{v}\|_{2} \max_{i \in \{1, \dots, m\}} \|\vec{r}_{i}\|_{2},$$
(61)

where the inequality step is by Cauchy-Schwarz. Therefore

$$\|A\|_{2,\infty} = \max_{\substack{\vec{v} \in \mathbb{R}^n \\ \|\vec{v}\|_2 = 1}} \|A\vec{v}\|_{\infty}$$
(62)

$$\leq \max_{\substack{\vec{v} \in \mathbb{R}^n \\ \|\vec{v}\|_2 = 1}} \|\vec{v}\|_2 \max_{i \in \{1, \dots, m\}} \|\vec{r}_i\|_2$$
(63)

$$= \max_{i \in \{1, \dots, m\}} \|\vec{r}_i\|_2.$$
(64)

This upper bound is always achievable. Let $i^* \in \operatorname{argmax}_{i \in \{1,...,m\}} \|\vec{r_i}\|_2$. Then, a choice of

$$\vec{v} = \frac{\vec{r}_{i^\star}}{\|\vec{r}_{i^\star}\|_2} \tag{65}$$

achieves the upper bound. We derive this by noting that we just need to make the above invocation of Cauchy-Schwarz tight, which occurs when \vec{v} is parallel to \vec{r}_{i^*} .

11. PCA and Regression (34 pts)

(a) (4 pts) Given the following plot of data in \mathbb{R}^2 (i.e., each dot is a data point in \mathbb{R}^2) and candidate unit vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in \mathbb{R}^2$, identify the candidate vectors which could be the first principal component and second principal component of the data (and specify which is which). *You do not need to show your work for this subpart.*

Solution: The vector \vec{v}_3 is the first principal component, since it aligns the most with the largest degree of variation in the data; alternatively, projecting onto it gives the minimum sum of squared errors, across all unit vectors. Then \vec{v}_2 is the second principal component since it is the only vector orthogonal to \vec{v}_3 .

(b) (6 pts) Suppose we have pairs of data $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$, where n > d. As usual, we arrange these data points into a matrix and vector, i.e.,

$$X = \begin{bmatrix} \vec{x}_1^\top \\ \vdots \\ \vec{x}_n^\top \end{bmatrix} \in \mathbb{R}^{n \times d}, \qquad \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n.$$
(66)

Assume that X is centered, i.e., each column has mean zero: $(1/n) \sum_{i=1}^{n} \vec{x}_i = \vec{0}_d$, where $\vec{0}_d$ is the zero vector in \mathbb{R}^d . Suppose that X has compact SVD given by $X = U_d \Sigma_d V_d^\top$ where

$$U_d = \begin{bmatrix} \vec{u}_1, \dots, \vec{u}_d \end{bmatrix} \in \mathbb{R}^{n \times d}, \qquad V_d = \begin{bmatrix} \vec{v}_1, \dots, \vec{v}_d \end{bmatrix} \in \mathbb{R}^{d \times d}, \qquad \Sigma_d = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_d \end{bmatrix} \in \mathbb{R}^{d \times d}$$
(67)

where $\sigma_1 > \sigma_2 > \cdots > \sigma_d > 0$. From this SVD, identify the top k principal components of the data $\{\vec{x}_1, \ldots, \vec{x}_n\} \subseteq \mathbb{R}^d$, where $k \leq d$. You do not need to show your work for this subpart.

HINT: Recall that the first principal component solves the optimization problem $\underset{\vec{w} \in \mathbb{R}^d: \|\vec{w}\|_2 = 1}{\operatorname{argmax}} \vec{w}^\top X^\top X \vec{w}.$

Solution: Recall that the sample covariance is

$$\frac{1}{n}\sum_{i=1}^{n}\vec{x}_{i}\vec{x}_{i}^{\top} = \frac{1}{n}X^{\top}X.$$
(68)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.

The top k principal components are the top k eigenvectors of the sample covariance, given by

$$\frac{1}{n}X^{\top}X = V_r\left(\frac{\Sigma_r^2}{n}\right)V_r^{\top}.$$
(69)

These principal components are then the first k columns of V_r , namely $\vec{v}_1, \ldots, \vec{v}_k$.

(c) (4 pts) Suppose that $P = \left[\vec{p}_1, \dots, \vec{p}_k\right] \in \mathbb{R}^{d \times k}$ is a matrix with columns \vec{p}_j . Let Z = XP, and let the entries of Z be z_{ij} , i.e.,

$$Z = \begin{bmatrix} z_{11} & \cdots & z_{1k} \\ \vdots & \ddots & \vdots \\ z_{n1} & \cdots & z_{nk} \end{bmatrix} \in \mathbb{R}^{n \times k}.$$
(70)

Give an expression for z_{ij} in terms of \vec{x}_i and \vec{p}_j . You do not need to show your work for this subpart. Solution: We have

$$Z = XP \tag{71}$$

$$\Longrightarrow Z^{\top} = P^{\top} X^{\top} \tag{72}$$

$$\implies \begin{bmatrix} \vec{z}_1 & \cdots & \vec{z}_n \end{bmatrix} = P^\top \begin{bmatrix} \vec{x}_1 & \cdots & \vec{x}_n \end{bmatrix} = \begin{bmatrix} P^\top \vec{x}_1 & \cdots & P^\top \vec{x}_n \end{bmatrix}.$$
(73)

Then we have

$$\vec{z}_i = P^{\top} \vec{x}_i = \begin{bmatrix} \vec{p}_1^{\top} \\ \vdots \\ \vec{p}_k^{\top} \end{bmatrix} \vec{x}_i = \begin{bmatrix} \vec{p}_1^{\top} \vec{x}_i \\ \vdots \\ \vec{p}_k^{\top} \vec{x}_i \end{bmatrix}.$$
(74)

(d) (10 pts) Define the matrices U_k , V_k , and Σ_k as

$$U_{k} = \begin{bmatrix} \vec{u}_{1}, \dots, \vec{u}_{k} \end{bmatrix} \in \mathbb{R}^{n \times k}, \qquad V_{k} = \begin{bmatrix} \vec{v}_{1}, \dots, \vec{v}_{k} \end{bmatrix} \in \mathbb{R}^{d \times k}, \qquad \Sigma_{k} = \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{k} \end{bmatrix} \in \mathbb{R}^{k \times k}.$$
(75)

Suppose that $P = V_k$, so that $Z = XV_k$. Let $\lambda \ge 0$, and let $\vec{\beta}^* \in \mathbb{R}^k$ solve the ridge regression problem

$$\vec{\beta}^{\star} \doteq \operatorname*{argmin}_{\vec{\beta} \in \mathbb{R}^k} \left[\|Z\vec{\beta} - \vec{y}\|_2^2 + \lambda \|\vec{\beta}\|_2^2 \right].$$
(76)

Show that:

$$\vec{\beta}^{\star} = (\Sigma_k^2 + \lambda I_k)^{-1} \Sigma_k U_k^\top \vec{y}, \tag{77}$$

where $I_k \in \mathbb{R}^{k \times k}$ is the $k \times k$ identity matrix.

Solution: We give two approaches, one which saves a lot of work by evaluating terms in an optimal order, and another which is more brute-force.

Approach 1.

To compute $\vec{\beta}^{\star}$, we have

$$Z = XP \tag{78}$$

$$=XV_k \tag{79}$$

$$= U_d \Sigma_d V_d^\top V_k \tag{80}$$

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.

=

12

PRINT your student ID: _____

EECS 127/227AT Midterm

2024-03-07 21:24:39-08:00

$$= U_d \Sigma_d \begin{bmatrix} V_k^\top \\ V_{d-k}^\top \end{bmatrix} V_k \tag{81}$$

$$= U_d \Sigma_d \begin{bmatrix} V_k^\top V_k \\ V_{d-k}^\top V_k \end{bmatrix}$$
(82)

$$= U_d \Sigma_d \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix}$$
(83)

$$= \begin{bmatrix} U_k & U_{d-k} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0_{k \times (d-k)} \\ 0_{(d-k) \times k} & \Sigma_{d-k} \end{bmatrix} \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix}$$
(84)

$$=U_k\Sigma_k,\tag{85}$$

where
$$U_{d-k} = \begin{bmatrix} \vec{u}_{k+1}, \dots, \vec{u}_d \end{bmatrix}$$
, $V_{d-k} = \begin{bmatrix} \vec{v}_{k+1}, \dots, \vec{v}_d \end{bmatrix}$, and $\Sigma_{d-k} = \begin{bmatrix} \sigma_{k+1} & & \\ & \ddots & \\ & & \sigma_d \end{bmatrix}$. Then

$$\vec{\beta}^{\star} = (Z^{\top}Z + \lambda I_k)^{-1} Z^{\top} \vec{y}$$
(86)

$$= ((U_k \Sigma_k)^{\top} (U_k \Sigma_k) + \lambda I)^{-1} (U_k \Sigma_k)^{\top} \vec{y}$$
(87)

$$= (\Sigma_k^{\top} \Sigma_k + \lambda I_k)^{-1} \Sigma_k^{\top} U_k^{\top} \vec{y}$$
(88)

$$= (\Sigma_k^2 + \lambda I_k)^{-1} \Sigma_k U_k^\top \vec{y}.$$
(89)

Approach 2.

We start by computing

$$\vec{\beta}^{\star} = (Z^{\top}Z + \lambda I)^{-1} Z^{\top} \vec{y}$$
(90)

$$= ((XV_k)^{\top}(XV_k) + \lambda I_k)^{-1}(XV_k)^{\top}\vec{y}$$
(91)

$$= (V_k^{\top} X^{\top} X V_k + \lambda I_k)^{-1} V_k^{\top} X^{\top} \vec{y}.$$
(92)

Now we plug in $X = U_d \Sigma_d V_d^{\top}$, and obtain

$$\vec{\beta}^{\star} = (V_k^{\top} (U_d \Sigma_d V_d^{\top})^{\top} (U_d \Sigma_d V_d^{\top}) V_k + \lambda I_k)^{-1} V_k^{\top} (U_d \Sigma_d V_d^{\top})^{\top} \vec{y}$$
(93)

$$= (V_k^{\top} V_d \Sigma_d U_d^{\top} U_d \Sigma_d V_d^{\top} V_k + \lambda I_k)^{-1} V_k^{\top} V_d \Sigma_d U_d^{\top} \vec{y}$$
(94)

$$= (V_k^\top V_d \Sigma_d^2 V_d^\top V_k + \lambda I_k)^{-1} V_k^\top V_d \Sigma_d U_d^\top \vec{y}.$$
(95)

As in the previous solution, we write

$$V_d^{\top} V_k = \begin{bmatrix} V_k^{\top} \\ V_{d-k}^{\top} \end{bmatrix} V_k = \begin{bmatrix} V_k^{\top} V_k \\ V_{d-k}^{\top} V_k \end{bmatrix} = \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix}.$$
(96)

This obtains

$$\vec{\beta}^{\star} = \left(\begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \Sigma_d^2 \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix} + \lambda I_k \right)^{-1} \begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \Sigma_d U_d^\top \vec{y}$$
(97)

$$= \left(\begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0_{k \times (d-k)} \\ 0_{(d-k) \times k} & \Sigma_{d-k} \end{bmatrix}^2 \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix} + \lambda I_k \right)^{-1} \begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \Sigma_d U_d^\top \vec{y}$$
(98)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.

(104)

$$= \left(\begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \begin{bmatrix} \Sigma_k^2 & 0_{k \times (d-k)} \\ 0_{(d-k) \times k} & \Sigma_{d-k}^2 \end{bmatrix} \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix} + \lambda I_k \right)^{-1} \begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \Sigma_d U_d^\top \vec{y}$$
(99)

$$= \left(\Sigma_k^2 + \lambda I_k\right)^{-1} \begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \Sigma_d U_d^\top \vec{y}$$
(100)

$$= \left(\Sigma_k^2 + \lambda I_k\right)^{-1} \begin{bmatrix} I_k & 0_{k \times (d-k)} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0_{k \times (d-k)} \\ 0_{(d-k) \times k} & \Sigma_{d-k} \end{bmatrix} \begin{bmatrix} U_k & U_{d-k} \end{bmatrix}^\top \vec{y}$$
(101)

$$= \left(\Sigma_k^2 + \lambda I_k\right)^{-1} \Sigma_k U_k^\top \vec{y}.$$
(102)

Note: The quantities $(V_k^{\top}MV_k)^{-1}$ and $V_k^{\top}M^{-1}V_k$ are not equal in general, because V_k is not square and not invertible, and so we cannot use the false identity $(V_k^{\top}MV_k)^{-1} = V_k^{\top}M^{-1}V_k$ expression to simplify any calculations.

(e) (10 pts) Let $\vec{\alpha}^* \in \mathbb{R}^d$ solve the original ridge regression problem, i.e.,

$$\vec{\alpha}^{\star} \doteq \underset{\vec{\alpha} \in \mathbb{R}^d}{\operatorname{argmin}} \left[\| X \vec{\alpha} - \vec{y} \|_2^2 + \lambda \| \vec{\alpha} \|_2^2 \right] = V_d (\Sigma_d^2 + \lambda I_d)^{-1} \Sigma_d U_d^\top \vec{y}, \tag{103}$$

where $I_d \in \mathbb{R}^{d \times d}$ is the $d \times d$ identity matrix. (You can assume without proof that the above equality is true.) Compute

$\|X\vec{\alpha}^{\star} - Z\vec{\beta}^{\star}\|_2^2,$

in terms of the vectors $(\vec{u}_i)_{i=1}^d$ and \vec{y} , and the scalars $(\sigma_i)_{i=1}^d$ and λ . Show your work and justify your answer(s). Solution: We use the compact SVD, though solutions can use any SVD (as long as the dimensions are kept correct). We have

$$X\vec{\alpha}^{\star} = (U_d \Sigma_d V_d^{\top})(V_d (\Sigma_d^2 + \lambda I)^{-1} \Sigma_d U_d^{\top} \vec{y})$$
(105)

$$= U_d \Sigma_d V_d^\top V_d (\Sigma_d^2 + \lambda I)^{-1} \Sigma_d U_d^\top \vec{y}$$
(106)

$$= U_d \Sigma_d (\Sigma_d^2 + \lambda I)^{-1} \Sigma_d U_d^\top \vec{y}$$

$$\begin{bmatrix} \sigma_1^2 \end{bmatrix}$$
(107)

$$= U_d \begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2 + \lambda} & & \\ & \ddots & \\ & & \frac{\sigma_d^2}{\sigma_d^2 + \lambda} \end{bmatrix} U_d^\top \vec{y}$$
(108)

$$=\sum_{i=1}^{d} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \vec{u}_i \vec{u}_i^{\mathsf{T}} \vec{y}$$
(109)

$$=\sum_{i=1}^{d} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} (\vec{u}_i^\top \vec{y}) \vec{u}_i$$
(110)

$$Z\vec{\beta}^{\star} = (U_k \Sigma_k)((\Sigma_k^2 + \lambda I)^{-1} \Sigma_k U_k^{\top} \vec{y})$$
(111)

$$= U_k \Sigma_k (\Sigma_k^2 + \lambda I)^{-1} \Sigma_k U_k^\top \vec{y}$$
(112)

$$= U_k \begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2 + \lambda} & & \\ & \ddots & \\ & & \frac{\sigma_k^2}{\sigma_k^2 + \lambda} \end{bmatrix} U_k^\top \vec{y}$$
(113)

$$=\sum_{i=1}^{k} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \vec{u}_i \vec{u}_i^{\top} \vec{y}$$
(114)

PRINT your student ID: _____

EECS 127/227AT Midterm

2024-03-07 21:24:39-08:00

$$=\sum_{i=1}^{k} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} (\vec{u}_i^{\top} \vec{y}) \vec{u}_i.$$
(115)

Thus

$$X\vec{\alpha}^{\star} - Z\vec{\beta}^{\star} = \sum_{i=k+1}^{d} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} (\vec{u}_i^{\top} \vec{y}) \vec{u}_i$$
(116)

$$\|X\vec{\alpha}^{\star} - Z\vec{\beta}^{\star}\|_{2}^{2} = \sum_{i=k+1}^{d} \left(\frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda}\right)^{2} (\vec{u}_{i}^{\top}\vec{y})^{2}.$$
(117)

Bonus 1: An alternative, equally valid way to compute $Z\vec{\beta}^*$ is as follows:

$$Z\vec{\beta}^{\star} = XV_k\vec{\beta}^{\star} \tag{118}$$

$$= (U_d \Sigma_d V_d^{\top}) V_k (\Sigma_k^2 + \lambda I_k)^{-1} \Sigma_k U_k^{\top} \vec{y}$$
(119)

$$= U_d \Sigma_d (V_d^\top V_k) (\Sigma_k^2 + \lambda I_k)^{-1} \Sigma_k U_k^\top \vec{y}$$
(120)

$$= \begin{bmatrix} U_k & U_{d-k} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0_{k \times (d-k)} \\ 0_{(d-k) \times k} & \Sigma_{d-k} \end{bmatrix} \begin{bmatrix} I_k \\ 0_{(d-k) \times k} \end{bmatrix} (\Sigma_k^2 + \lambda I_k)^{-1} \Sigma_k U_k^\top \vec{y}$$
(121)

$$= U_k \Sigma_k (\Sigma_k^2 + \lambda I_k)^{-1} \Sigma_k U_k^\top \vec{y}.$$
(122)

Bonus 2: to compute $\vec{\alpha}^*$ in the first place, we used a similar calculation to part (d), obtaining

$$\vec{\alpha}^{\star} = (X^{\top}X + \lambda I)^{-1}X^{\top}\vec{y} \tag{123}$$

$$= ((U_d \Sigma_d V_d^{\top})^{\top} (U_d \Sigma_d V_d^{\top}) + \lambda I)^{-1} (U_d \Sigma_d V_d^{\top})^{\top} \vec{y}$$
(124)

$$= (V_d \Sigma_d^\top U_d^\top U_d \Sigma_d V_d^\top + \lambda I)^{-1} V_d \Sigma_d^\top U_d^\top \vec{y}$$
(125)

$$= (V_d \Sigma_d^2 V_d^\top + \lambda I)^{-1} V_d \Sigma_d U_d^\top$$
(126)

$$= (V_d(\Sigma_d^2 + \lambda I)V_d^{\top})^{-1}V_d\Sigma_d U_d^{\top}$$
(127)

$$= V_d (\Sigma_d^2 + \lambda I)^{-1} V_d^\top V_d \Sigma_d U_d^\top$$
(128)

$$= V_d (\Sigma_d^2 + \lambda I)^{-1} \Sigma_d U_d^\top \vec{y}.$$
(129)