1. Norms

(a) Show that the following inequalities hold for any vector \(\vec{x} \in \mathbb{R}^n \):

\[
\frac{1}{\sqrt{n}} \| \vec{x} \|_2 \leq \| \vec{x} \|_{\infty} \leq \| \vec{x} \|_2 \leq \| \vec{x} \|_1 \leq \sqrt{n} \| \vec{x} \|_2 \leq n \| \vec{x} \|_{\infty}.
\] (1)

As an aside: note that we can interpret different norms as different ways of computing distance between two points \(\vec{x}, \vec{y} \in \mathbb{R}^2 \). The \(\ell_2 \) norm is the distance as the crow flies (i.e. point-to-point distance), the \(\ell_1 \) norm, also known as the Manhattan distance is the distance you would have to cover if you were to navigate from \(\vec{x} \) to \(\vec{y} \) via a rectangular street grid, and the \(\ell_\infty \) norm is the maximum distance that you have to travel in either the north-south or the east-west direction.

(b) We define the cardinality of the vector \(\vec{x} \) as the number of non-zero elements in \(\vec{x} \). This is also commonly known as the \(\ell_0 \) norm of the vector \(\vec{x} \), denoted by \(\| \vec{x} \|_0 \). Show that for any non-zero vector \(\vec{x} \),

\[
\| \vec{x} \|_0 \geq \frac{\| \vec{x} \|_1^2}{\| \vec{x} \|_2^2}.
\] (2)

Find all vectors \(\vec{x} \) for which the lower bound is attained.
2. Distinct Eigenvalues, Orthogonal Eigenspaces

Let $A \in S^n$ (i.e. the set of $n \times n$ symmetric matrices) and $(\lambda_1, \vec{u}_1), (\lambda_2, \vec{u}_2), \lambda_1 \neq \lambda_2$ be distinct eigenpairs of A. Show that $\langle \vec{u}_1, \vec{u}_2 \rangle = 0$, i.e eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.

Note: This exercise is part of the proof of the spectral theorem.
3. Gram Schmidt

Any set of \(n \) linearly independent vectors in \(\mathbb{R}^n \) could be used as a basis for \(\mathbb{R}^n \). However, certain bases could be more suitable for certain operations than others. For example, an orthonormal basis could facilitate solving linear equations.

(a) Given a matrix \(A \in \mathbb{R}^{n \times n} \), it could be represented as a multiplication of two matrices

\[
A = QR,
\]

where \(Q \) is an orthonormal in \(\mathbb{R}^n \) and \(R \) is an upper-triangular matrix. For the matrix \(A \), describe how Gram-Schmidt process could be used to find the \(Q \) and \(R \) matrices, and apply this to

\[
A = \begin{bmatrix}
3 & -3 & 1 \\
4 & -4 & -7 \\
0 & 3 & 3
\end{bmatrix}
\]

to find an orthogonal matrix \(Q \) and an upper-triangular matrix \(R \).

(b) Given an invertible matrix \(A \in \mathbb{R}^{n \times n} \) and an observation vector \(b \in \mathbb{R}^n \), the solution to the equality

\[
Ax = b
\]

is given as \(x = A^{-1}b \). For the matrix \(A = QR \) from part (a), assume that we want to solve

\[
Ax = \begin{bmatrix}
8 \\
-6 \\
3
\end{bmatrix}.
\]

By using the fact that \(Q \) is an orthonormal matrix, find \(v \) such that

\[
Rx = v.
\]

Then, given the upper-triangular matrix \(R \) in part (a) and \(v \), find the elements of \(x \) sequentially.

(c) Given an invertible matrix \(B \in \mathbb{R}^{n \times n} \) and an observation vector \(c \in \mathbb{R}^n \), find the computational cost of finding the solution \(z \) to the equation \(Bz = c \) by using the \(QR \) decomposition of \(B \). Assume that \(Q \) and \(R \) matrices are available, and adding, multiplying, and dividing scalars take one unit of “computation”.

As an example, computing the inner product \(a^\top b \) is said to be \(O(n) \), since we have \(n \) scalar multiplication for each \(a_i b_i \). Similarly, matrix vector multiplication is \(O(n^2) \), since matrix vector multiplication can be viewed as computing \(n \) inner products. The computational cost for inverting a matrix in \(\mathbb{R}^n \) is \(O(n^3) \), and consequently, the cost grows rapidly as the set of equations grows in size. This is why the expression \(A^{-1}b \) is usually not computed by directly inverting the matrix \(A \). Instead, the \(QR \) decomposition of \(A \) is exploited to decrease the computational cost.
4. Eigenvectors of a Symmetric Matrix

Let \(\vec{p}, \vec{q} \in \mathbb{R}^n \) be two linearly independent vectors, with unit norm (\(\|\vec{p}\|_2 = \|\vec{q}\|_2 = 1 \)). Define the symmetric matrix \(A := \vec{p}\vec{q}^\top + \vec{q}\vec{p}^\top \). In your derivations, it may be useful to use the notation \(c := \vec{p}^\top \vec{q} \).

(a) Show that \(\vec{p} + \vec{q} \) and \(\vec{p} - \vec{q} \) are eigenvectors of \(A \), and determine the corresponding eigenvalues.

(b) Determine the nullspace and rank of \(A \).

(c) Find an eigenvalue decomposition of \(A \), in terms of \(\vec{p}, \vec{q} \). \(\text{(HINT: Use the previous two parts.)} \)

(d) \(\text{(OPTIONAL)} \) Now consider general vectors \(\vec{p}_{\text{new}}, \vec{q}_{\text{new}} \) that are scaled versions of \(\vec{p}, \vec{q} \). Note that \(\vec{p}_{\text{new}}, \vec{q}_{\text{new}} \) are not necessarily norm 1. Define the matrix \(A_{\text{new}} := \vec{p}_{\text{new}}\vec{q}_{\text{new}}^\top + \vec{q}_{\text{new}}\vec{p}_{\text{new}}^\top \).

Write \(A_{\text{new}} \) as a function \(\vec{p}, \vec{q} \) and their norms, and the eigenvalues of matrix \(A_{\text{new}} \) as a function of \(\vec{p}, \vec{q} \) and their norms.
5. PSD Matrices

In this problem, we will analyze properties of positive semidefinite (PSD) matrices. A matrix \(M \) is a PSD matrix if all its eigenvalues are non-negative, and we denote that as \(M \preceq 0 \).

Assume \(A \in \mathbb{R}^{n \times n} \) is a symmetric matrix.

(a) Show that \(\forall \vec{x} \in \mathbb{R}^{n}, \vec{x}^\top A \vec{x} \geq 0 \iff \text{all eigenvalues of } A \text{ are non-negative.} \)

Now we will show that a symmetric matrix \(A \) is positive semidefinite if and only if there exists a symmetric matrix \(P \in \mathbb{R}^{n \times n} \) such that \(A = P^\top P \).

(b) First, show that \(A \) having non-negative eigenvalues allows us to decompose \(A = P^\top P \) where \(P \succeq 0 \).

(c) Now, show that any matrix of the form \(A = P^\top P \) is positive semidefinite, i.e. \(A \succeq 0 \).

(d) If \(A \succeq 0 \), all diagonal entries of \(A \) are non-negative, \(A_{ii} \geq 0 \).
6. SVD Transformation

In this problem we will interpret the linear map corresponding to a matrix $A \in \mathbb{R}^{n \times n}$ by looking at its singular value decomposition, $A = UDV^T$. Recall that here $U, D, V \in \mathbb{R}^{n \times n}$ and U, V are orthonormal matrices while D is a diagonal matrix. We will first look at how V^T, D and U each separately transform the unit circle $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ and then look at their effect as a whole. This problem has an associated Jupyter notebook, `svd_transformation.ipynb` that contains several parts (b, c, d, e) of the problem. These sub-parts can be answered in the notebook itself in the space provided and can be submitted as an attachment to this PDF using the "Download as PDF" feature that Jupyter notebook supports.

(a) Show that $V^T \vec{x}$ represents \vec{x} in the basis defined by the columns of V. Recall: $V^TV = I$.

For the rest of the problem we restrict ourselves to the case where $A \in \mathbb{R}^{2 \times 2}$ and move to the Jupyter notebook.
7. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.