This homework is due at 11 PM on January 26, 2024.

Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers (any handwritten answers should be scanned).

1. Least Squares

The Michaelis-Menten model for enzyme kinetics relates the rate y of an enzymatic reaction to the concentration x of a substrate, as follows:

$$
\begin{equation*}
y=\frac{\beta_{1} x}{\beta_{2}+x} \tag{1}
\end{equation*}
$$

for constants $\beta_{1}, \beta_{2}>0$.
(a) Show that the model can be expressed as a linear relation between the values $1 / y=y^{-1}$ and $1 / x=x^{-1}$. Specifically, give an equation of the form $y^{-1}=w_{1}+w_{2} x^{-1}$, specifying the values of w_{1} and w_{2} in terms of β_{1} and β_{2}.
(b) In general, reaction parameters β_{1} and β_{2} (and, thus, w_{1} and w_{2}) are not known a priori and must be fit from data - for example, using least squares. Suppose you collect m measurements (x_{i}, y_{i}), i=1, .., m over the course of a reaction. Formulate the least squares problem

$$
\begin{equation*}
\vec{w}^{\star}=\underset{\vec{w}}{\operatorname{argmin}}\|X \vec{w}-\vec{y}\|_{2}^{2} \tag{2}
\end{equation*}
$$

where $\vec{w}^{\star}=\left[\begin{array}{ll}w_{1}^{\star} & w_{2}^{\star}\end{array}\right]^{\top}$, and you must specify $X \in \mathbb{R}^{m \times 2}$ and $\vec{y} \in \mathbb{R}^{m}$. Specifically, your solution should include explicit expressions for X and \vec{y} as a function of $\left(x_{i}, y_{i}\right)$ values and a final expression for \vec{w}^{\star} in terms of X and \vec{y}, which should contain only matrix multiplications, transposes, and inverses.
Assume without loss of generality that $x_{1} \neq x_{2}$.
(c) Assume that we have used the above procedure to calculate values for w_{1}^{\star} and w_{2}^{\star}, and we now want to estimate $\widehat{\vec{\beta}}=\left[\begin{array}{ll}\widehat{\beta}_{1} & \widehat{\beta}_{2}\end{array}\right]^{\top}$. Write an expression for $\widehat{\vec{\beta}}$ in terms of w_{1}^{\star} and w_{2}^{\star}.

NOTE: This problem was taken (with some edits) from the textbook Optimization Models by Calafiore and El Ghaoui.

2. Subspaces and Dimensions

Consider the set \mathcal{S} of points $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
x_{1}+2 x_{2}+3 x_{3}=0, \quad 3 x_{1}+2 x_{2}+x_{3}=0 \tag{3}
\end{equation*}
$$

(a) Find a 2×3 matrix A for which \mathcal{S} is exactly the null space of A.
(b) Determine the dimension of \mathcal{S} and find a basis for it.

3. Vector Spaces and Rank

The rank of a $m \times n$ matrix $A, \operatorname{rank}(A)$, is the dimension of its range, also called span, and denoted $\mathcal{R}(A):=$ $\left\{A \vec{x}: \vec{x} \in \mathbb{R}^{n}\right\}$.
(a) Assume that $A \in \mathbb{R}^{m \times n}$ takes the form $A=\vec{u} \vec{v}^{\top}$, with $\vec{u} \in \mathbb{R}^{m}, \vec{v} \in \mathbb{R}^{n}$, and $\vec{u}, \vec{v} \neq \overrightarrow{0}$. (Note that a matrix of this form is known as a dyad.) Find the rank of A.

HINT: Consider the quantity $A \vec{x}$ for arbitrary \vec{x}, i.e., what happens when you multiply any vector by matrix A.
(b) Show that for arbitrary $A, B \in \mathbb{R}^{m \times n}$,

$$
\begin{equation*}
\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B) \tag{4}
\end{equation*}
$$

i.e., the rank of the sum of two matrices is less than or equal to the sum of their ranks.

HINT: First, show that $\mathcal{R}(A+B) \subseteq \mathcal{R}(A)+\mathcal{R}(B)$, meaning that any vector in the range of $A+B$ can be expressed as the sum of two vectors, each in the range of A and B, respectively. Remember that for any matrix $A, \mathcal{R}(A)$ is a subspace, and for any two subspaces S_{1} and $S_{2}, \operatorname{dim}\left(S_{1}+S_{2}\right) \leq$ $\operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right) .{ }^{1}$ (Note that the sum of vector spaces $S_{1}+S_{2}$ is not equivalent to $S_{1} \cup S_{2}$, but is defined as $S_{1}+S_{2}:=\left\{\vec{s}_{1}+\overrightarrow{s_{2}} \mid \overrightarrow{s_{1}} \in S_{1}, \overrightarrow{s_{2}} \in S_{2}\right\}$.)
(c) Consider an $m \times n$ matrix A that takes the form $A=U V^{\top}$, with $U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}$. Show that the rank of A is less or equal than k. HINT: Use parts (a) and (b), and remember that this decomposition can also be written as the dyadic expansion

$$
\begin{align*}
& \qquad A=U V^{\top}=\left[\begin{array}{lll}
\vec{u}_{1} & \ldots & \vec{u}_{k}
\end{array}\right]\left[\begin{array}{c}
\vec{v}_{1}^{\top} \\
\vdots \\
\vec{v}_{k}^{\top}
\end{array}\right]=\sum_{i=1}^{k} \vec{u}_{i} \vec{v}_{i}^{\top}, \tag{5}\\
& \text { for } U=\left[\begin{array}{lll}
\vec{u}_{1} & \ldots & \vec{u}_{k}
\end{array}\right] \text { and } V=\left[\begin{array}{lll}
\vec{v}_{1} & \ldots & \vec{v}_{k}
\end{array}\right] .
\end{align*}
$$

[^0]
4. Norms

(a) Show that the following inequalities hold for any vector $\vec{x} \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\|\vec{x}\|_{2} \leq\|\vec{x}\|_{\infty} \leq\|\vec{x}\|_{2} \leq\|\vec{x}\|_{1} \leq \sqrt{n}\|\vec{x}\|_{2} \leq n\|\vec{x}\|_{\infty} \tag{6}
\end{equation*}
$$

NOTE: We can interpret different norms as different ways of computing distance between two points $\vec{x}, \vec{y} \in \mathbb{R}^{2}$. The ℓ^{2} norm is the distance as the crow flies (i.e. point-to-point distance), the ℓ^{1} norm, also known as the Manhattan distance is the distance you would have to cover if you were to navigate from \vec{x} to \vec{y} via a rectangular street grid, and the ℓ^{∞} norm is the maximum distance that you have to travel in either the north-south or the east-west direction.
(b) We define the sparsity of the vector \vec{x} as the number of non-zero elements in \vec{x}. This is also commonly known as the ℓ^{0} norm of the vector \vec{x}, denoted by $\|\vec{x}\|_{0}$. Show that for any non-zero vector x,

$$
\begin{equation*}
\|\vec{x}\|_{0} \geq \frac{\|\vec{x}\|_{1}^{2}}{\|\vec{x}\|_{2}^{2}} \tag{7}
\end{equation*}
$$

Find all vectors \vec{x} for which the lower bound is attained.

5. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members. NOTE: If you didn't work with anyone, you can put "none" as your answer.

[^0]: ${ }^{1}$ This fact can be proved by taking a basis of S_{1} and extending it to a basis of S_{2} (during which we can only add at most $\operatorname{dim}\left(S_{2}\right)$ basis vectors). This extended basis must now also be a basis of $S_{1}+S_{2}$. Thus, $\operatorname{dim}\left(S_{1}+S_{2}\right) \leq \operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)$.

