This homework is due at 11 PM on January 26, 2024.

Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers (any handwritten answers should be scanned).

1. Least Squares

The Michaelis-Menten model for enzyme kinetics relates the rate y of an enzymatic reaction to the concentration x of a substrate, as follows:

$$y = \frac{\beta_1 x}{\beta_2 + x},\tag{1}$$

for constants $\beta_1, \beta_2 > 0$.

- (a) Show that the model can be expressed as a linear relation between the values $1/y = y^{-1}$ and $1/x = x^{-1}$. Specifically, give an equation of the form $y^{-1} = w_1 + w_2 x^{-1}$, specifying the values of w_1 and w_2 in terms of β_1 and β_2 .
- (b) In general, reaction parameters β₁ and β₂ (and, thus, w₁ and w₂) are not known a priori and must be fit from data for example, using least squares. Suppose you collect m measurements (x_i, y_i), i = 1, ..., m over the course of a reaction. Formulate the least squares problem

$$\vec{w}^{\star} = \underset{\vec{w}}{\operatorname{argmin}} \left\| X \vec{w} - \vec{y} \right\|_{2}^{2}, \tag{2}$$

where $\vec{w}^{\star} = \begin{bmatrix} w_1^{\star} & w_2^{\star} \end{bmatrix}^{\top}$, and you must specify $X \in \mathbb{R}^{m \times 2}$ and $\vec{y} \in \mathbb{R}^m$. Specifically, your solution should include explicit expressions for X and \vec{y} as a function of (x_i, y_i) values and a final expression for \vec{w}^{\star} in terms of X and \vec{y} , which should contain only matrix multiplications, transposes, and inverses.

Assume without loss of generality that $x_1 \neq x_2$.

(c) Assume that we have used the above procedure to calculate values for w_1^* and w_2^* , and we now want to estimate $\hat{\vec{\beta}} = \begin{bmatrix} \hat{\beta}_1 & \hat{\beta}_2 \end{bmatrix}^\top$. Write an expression for $\hat{\vec{\beta}}$ in terms of w_1^* and w_2^* .

NOTE: This problem was taken (with some edits) from the textbook *Optimization Models* by Calafiore and El Ghaoui.

2. Subspaces and Dimensions

Consider the set S of points $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that

$$x_1 + 2x_2 + 3x_3 = 0, \quad 3x_1 + 2x_2 + x_3 = 0.$$
 (3)

- (a) Find a 2×3 matrix A for which S is exactly the null space of A.
- (b) Determine the dimension of S and find a basis for it.

3. Vector Spaces and Rank

The rank of a $m \times n$ matrix A, rank(A), is the dimension of its range, also called span, and denoted $\mathcal{R}(A) := \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}.$

(a) Assume that $A \in \mathbb{R}^{m \times n}$ takes the form $A = \vec{u}\vec{v}^{\top}$, with $\vec{u} \in \mathbb{R}^{m}$, $\vec{v} \in \mathbb{R}^{n}$, and $\vec{u}, \vec{v} \neq \vec{0}$. (Note that a matrix of this form is known as a *dyad*.) Find the rank of A.

HINT: Consider the quantity $A\vec{x}$ *for arbitrary* \vec{x} *, i.e., what happens when you multiply any vector by matrix* A.

(b) Show that for arbitrary $A, B \in \mathbb{R}^{m \times n}$,

$$\operatorname{rank}(A+B) \le \operatorname{rank}(A) + \operatorname{rank}(B),\tag{4}$$

i.e., the rank of the sum of two matrices is less than or equal to the sum of their ranks.

HINT: First, show that $\mathcal{R}(A+B) \subseteq \mathcal{R}(A) + \mathcal{R}(B)$, meaning that any vector in the range of A + B can be expressed as the sum of two vectors, each in the range of A and B, respectively. Remember that for any matrix A, $\mathcal{R}(A)$ is a subspace, and for any two subspaces S_1 and S_2 , dim $(S_1 + S_2) \leq \dim(S_1) + \dim(S_2)$.¹ (Note that the sum of vector spaces $S_1 + S_2$ is not equivalent to $S_1 \cup S_2$, but is defined as $S_1 + S_2 := \{\vec{s}_1 + \vec{s}_2 | \vec{s_1} \in S_1, \vec{s_2} \in S_2\}$.)

(c) Consider an $m \times n$ matrix A that takes the form $A = UV^{\top}$, with $U \in \mathbb{R}^{m \times k}$, $V \in \mathbb{R}^{n \times k}$. Show that the rank of A is less or equal than k. *HINT: Use parts (a) and (b), and remember that this decomposition can also be written as the* dyadic expansion

$$A = UV^{\top} = \begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_k \end{bmatrix} \begin{bmatrix} \vec{v}_1^{\top} \\ \vdots \\ \vec{v}_k^{\top} \end{bmatrix} = \sum_{i=1}^k \vec{u}_i \vec{v}_i^{\top},$$
(5)

for $U = \begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_k \end{bmatrix}$ and $V = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_k \end{bmatrix}$.

¹This fact can be proved by taking a basis of S_1 and extending it to a basis of S_2 (during which we can only add *at most* dim (S_2) basis vectors). This extended basis must now also be a basis of $S_1 + S_2$. Thus, dim $(S_1 + S_2) \le \dim(S_1) + \dim(S_2)$.

4. Norms

(a) Show that the following inequalities hold for any vector $\vec{x} \in \mathbb{R}^n$:

$$\frac{1}{\sqrt{n}} \|\vec{x}\|_2 \le \|\vec{x}\|_\infty \le \|\vec{x}\|_2 \le \|\vec{x}\|_1 \le \sqrt{n} \|\vec{x}\|_2 \le n \|\vec{x}\|_\infty.$$
(6)

NOTE: We can interpret different norms as different ways of computing distance between two points $\vec{x}, \vec{y} \in \mathbb{R}^2$. The ℓ^2 norm is the distance as the crow flies (i.e. point-to-point distance), the ℓ^1 norm, also known as the Manhattan distance is the distance you would have to cover if you were to navigate from \vec{x} to \vec{y} via a rectangular street grid, and the ℓ^{∞} norm is the maximum distance that you have to travel in either the north-south or the east-west direction.

(b) We define the *sparsity* of the vector \vec{x} as the number of non-zero elements in \vec{x} . This is also commonly known as the ℓ^0 norm of the vector \vec{x} , denoted by $\|\vec{x}\|_0$. Show that for any non-zero vector x,

$$\|\vec{x}\|_{0} \ge \frac{\|\vec{x}\|_{1}^{2}}{\|\vec{x}\|_{2}^{2}}.$$
(7)

Find all vectors \vec{x} for which the lower bound is attained.

5. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn't work with anyone, you can put "none" as your answer.