
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 2

Self grades are due at 11 PM on February 2, 2024.

1. Least Squares

The Michaelis-Menten model for enzyme kinetics relates the rate y of an enzymatic reaction to the concentration
x of a substrate, as follows:

y = β1x

β2 + x
, (1)

for constants β1, β2 > 0.

(a) Show that the model can be expressed as a linear relation between the values 1/y = y−1 and 1/x = x−1.
Specifically, give an equation of the form y−1 = w1 + w2x−1, specifying the values of w1 and w2 in terms
of β1 and β2.

Solution: Inverting each side of the equation, we have

y−1 =
(

β1x

β2 + x

)−1
(2)

= β2 + x

β1x
(3)

= β2

β1x
+ x

β1x
(4)

= β2

β1
x−1 + 1

β1
(5)

= 1
β1

+ β2

β1
x−1. (6)

(7)

The above equation has exactly the desired form y−1 = w1 + w2x−1 for w1 = 1
β1

and w2 = β2
β1

.

(b) In general, reaction parameters β1 and β2 (and, thus, w1 and w2) are not known a priori and must be fit
from data — for example, using least squares. Suppose you collect m measurements (xi, yi), i = 1, . . . , m

over the course of a reaction. Formulate the least squares problem

~w? = argmin
~w

‖X ~w − ~y‖2
2 , (8)

where ~w? =
[
w?

1 w?
2

]>
, and you must specify X ∈ Rm×2 and ~y ∈ Rm. Specifically, your solution

should include explicit expressions for X and ~y as a function of (xi, yi) values and a final expression for
~w? in terms of X and ~y, which should contain only matrix multiplications, transposes, and inverses.

Assume without loss of generality that x1 6= x2.

Solution: To formulate the least squares problem as stated, X and ~y values should be set to

X =
[

1 . . . 1
x−1

1 . . . x−1
m

]>

, ~y =
[
y−1

1 . . . y−1
m

]>
. (9)
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To solve this least squares problem, we note that the optimal residual vector X ~w? − ~y must be orthogonal
to R(X) by the orthogonality principle, and we have

X>(X ~w? − ~y) = 0. (10)

Rearranging we get,
~w? = (X>X)−1X>~y. (11)

(c) Assume that we have used the above procedure to calculate values for w?
1 and w?

2 , and we now want to

estimate ~̂β =
[
β̂1 β̂2

]>
. Write an expression for ~̂β in terms of w?

1 and w?
2 .

Solution: To calculate ~̂β, we can simply reverse the calculations from part (a):

w1 = 1
β1

=⇒ β1 = 1
w1

, (12)

w2 = β2

β1
=⇒ β2 = β1w2 = w2

w1
. (13)

Thus, ~̂β =
[

1
w?

1

w?
2

w?
1

]>
.

NOTE: This problem was taken (with some edits) from the textbook Optimization Models by Calafiore and El
Ghaoui.
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2. Subspaces and Dimensions

Consider the set S of points (x1, x2, x3) ∈ R3 such that

x1 + 2x2 + 3x3 = 0, 3x1 + 2x2 + x3 = 0. (14)

(a) Find a 2 × 3 matrix A for which S is exactly the null space of A.

Solution: Recall the definition of the null space of a matrix A as the set of all vectors ~x such that A~x = ~0.
The equations

x1 + 2x2 + 3x3 = 0 (15)

3x1 + 2x2 + x3 = 0 (16)

can be written in matrix-vector form as

[
1 2 3
3 2 1

]x1

x2

x3

 =
[

0
0

]
. (17)

The set of ~x =
[
x1, x2, x3

]>
which satisfy this equation form the null space of

[
1 2 3
3 2 1

]
. This is the

matrix we are looking for.

(b) Determine the dimension of S and find a basis for it.

Solution: Recall the definitions of a basis and the dimension of a subspace, which are related. A basis for
a space is a set of linearly independent vectors that span the space. The dimension of this space is then the
number of vectors in the basis.

To find the dimension, we solve the equation and find that any solution to the equations is of the form

x1 = x3, x2 = −2x3, where x3 is free. Thus, the solutions are of the form
[
1, −2, 1

]>
u for u ∈ R, and

so S = span
([

1, −2, 1
]>
)
. Hence, the dimension of S is 1, and a basis for S is the vector

[
1, −2, 1

]>
.
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3. Vector Spaces and Rank

The rank of a m × n matrix A, rank(A), is the dimension of its range, also called span, and denoted R(A) :=
{A~x : ~x ∈ Rn}.

(a) Assume that A ∈ Rm×n takes the form A = ~u~v>, with ~u ∈ Rm, ~v ∈ Rn, and ~u,~v 6= ~0. (Note that a
matrix of this form is known as a dyad.) Find the rank of A.

HINT: Consider the quantity A~x for arbitrary ~x, i.e., what happens when you multiply any vector by matrix
A.

Solution: For any ~x ∈ Rn, we have that A~x = ~u~v>~x = ~u(~v>~x) = (~v>~x)~u. Note that ~v>~x is a scalar that
can take on any value depending on choice of ~x. Since the range of A is the subspace reachable through
any choice of ~x, R(A) is simply the 1-dimensional subspace spanned by ~u (i.e., the line pointing along ~u).
Since a single vector (namely, ~u) spans R(A), the rank of A is 1.

(b) Show that for arbitrary A, B ∈ Rm×n,

rank(A + B) ≤ rank(A) + rank(B), (18)

i.e., the rank of the sum of two matrices is less than or equal to the sum of their ranks.

HINT: First, show that R(A + B) ⊆ R(A) + R(B), meaning that any vector in the range of A + B can
be expressed as the sum of two vectors, each in the range of A and B, respectively. Remember that for
any matrix A, R(A) is a subspace, and for any two subspaces S1 and S2, dim(S1 + S2) ≤ dim(S1) +
dim(S2).¹ (Note that the sum of vector spaces S1 + S2 is not equivalent to S1 ∪ S2, but is defined as
S1 + S2 := {~s1 + ~s2|~s1 ∈ S1, ~s2 ∈ S2}.)

Solution: Given any vector ~v ∈ R(A + B), there must by definition exist ~x ∈ Rn such that ~v = (A+B)~x.
Thus, ~v = (A + B)~x = A~x︸︷︷︸

∈R(A)

+ B~x︸︷︷︸
∈R(B)

, so R(A + B) ⊆ R(A) + R(B), as hinted.

Computing the dimension of each side of the subset relationship, it follows that

dim(R(A + B)) ≤ dim(R(A) + R(B)). (19)

Using the second part of the hint, we have that

dim(R(A) + R(B)) ≤ dim(R(A)) + dim(R(B)). (20)

Combining the previous two equations,

dim(R(A + B)) ≤ dim(R(A)) + dim(R(B)), (21)

i.e., by definition,
rank(A + B) ≤ rank(A) + rank(B) (22)

as desired.

(c) Consider an m × n matrix A that takes the form A = UV >, with U ∈ Rm×k, V ∈ Rn×k. Show that the
rank of A is less or equal than k. HINT: Use parts (a) and (b), and remember that this decomposition can

¹This fact can be proved by taking a basis of S1 and extending it to a basis of S2 (during which we can only add at most dim(S2) basis vectors).
This extended basis must now also be a basis of S1 + S2. Thus, dim(S1 + S2) ≤ dim(S1) + dim(S2).
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also be written as the dyadic expansion

A = UV > =
[
~u1 . . . ~uk

]
~v>

1
...

~v>
k

 =
k∑

i=1
~ui~v

>
i , (23)

for U =
[
~u1 . . . ~uk

]
and V =

[
~v1 . . . ~vk

]
.

Solution: Starting with the dyadic expansion above, iteratively pulling out terms from this summation, and
using the result from (a) that the rank of a dyadic matrix is 1 (or 0, if any ~vi = ~0), we know by the rank
relation from (b) that

rank(A) = rank
(

k∑
i=1

~ui~v
>
i

)
≤ rank

(
k−1∑
i=1

~ui~v
>
i

)
+ rank

(
~uk~v>

k

)︸ ︷︷ ︸
0 or 1

≤ . . . ≤ k, (24)

as desired.
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4. Norms

(a) Show that the following inequalities hold for any vector ~x ∈ Rn:

1√
n

‖~x‖2 ≤ ‖~x‖∞ ≤ ‖~x‖2 ≤ ‖~x‖1 ≤
√

n ‖~x‖2 ≤ n ‖~x‖∞ . (25)

NOTE: We can interpret different norms as different ways of computing distance between two points ~x, ~y ∈
R2. The `2 norm is the distance as the crow flies (i.e. point-to-point distance), the `1 norm, also known
as the Manhattan distance is the distance you would have to cover if you were to navigate from ~x to ~y via
a rectangular street grid, and the `∞ norm is the maximum distance that you have to travel in either the
north-south or the east-west direction.

Solution: We have

‖~x‖2
2 =

n∑
i=1

x2
i ≤ n · max

i
x2

i = n · ‖~x‖2
∞ . (26)

Also, ‖~x‖∞ ≤
√

x2
1 + . . . + x2

n = ‖~x‖2. The inequality ‖~x‖2 ≤ ‖~x‖1 is obtained after squaring both
sides, and checking that

n∑
i=1

x2
i ≤

n∑
i=1

x2
i +

∑
i 6=j

|xixj | =
(

n∑
i=1

|xi|

)2

= ‖~x‖2
1 . (27)

The condition ‖~x‖1 ≤
√

n ‖~x‖2 is due to the Cauchy-Schwarz inequality∣∣~z>~y
∣∣ ≤ ‖~y‖2 · ‖~z‖2 , (28)

applied to the two vectors y =
[
1 · · · 1

]>
and ~z = |~x| =

[
|x1| · · · |xn|

]
.

Finally,
√

n ‖~x‖2 ≤ n ‖~x‖∞, is achieved by an algebraic manipulation of the first derived bound using the
fact that

√
n = n√

n
.

(b) We define the sparsity of the vector ~x as the number of non-zero elements in ~x. This is also commonly
known as the `0 norm of the vector ~x, denoted by ‖~x‖0. Show that for any non-zero vector x,

‖~x‖0 ≥
‖~x‖2

1

‖~x‖2
2

. (29)

Find all vectors ~x for which the lower bound is attained.

Solution: Let us apply the Cauchy-Schwarz inequality with ~z = |~x| again, and with ~y a vector with yi = 1
if xi 6= 0, and yi = 0 otherwise. We have ‖~y‖2 =

√
k, with k = ‖~x‖0. Hence∣∣~z>~y

∣∣ = ‖~x‖1 ≤ ‖~y‖2 · ‖~z‖2 =
√

k · ‖~x‖2 , (30)

which proves the result. The bound is attained for vectors with k non-zero elements, all with the same
magnitude.
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5. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7


