
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 3

Self grades are due at 11 PM on February 9, 2024.
1. Miscellaneous

(a) Let m, n be positive integers where m ≥ n, and let U ∈ Rm×n be an orthonormal matrix (i.e., having
orthonormal columns). Show that for any ~x ∈ Rn we have

‖U~x‖2 = ‖~x‖2 . (1)

Solution: Because U is orthonormal, we have U>U = I . Thus

‖U~x‖2
2 = (U~x)>(U~x) = ~x>U>U~x = ~x>~x = ‖~x‖2

2 . (2)

(b) Using the Gram-Schmidt process, find an orthonormal basis {~v1, ~v2, ~v3} of R3, where

~v1 =

1/
√

2
1/

√
2

0

 . (3)

Solution: We apply Gram-Schmidt process to the sequence (~v1, ~e1, ~e2, ~e3) where ~ei is the i standard basis
vector. Exactly one of them will be ~0 after the process, and we can throw it out to obtain an orthonormal
basis.

One can compute

‖~v1‖2
2 =

(
1√
2

)2
+
(

1√
2

)2
= 1

2 + 1
2 = 1, (4)

so it is already normalized. To find ~v2 we compute

~z2 = ~e1 − (~v>
1 ~e1)︸ ︷︷ ︸

=1/
√

2

~v1 (5)

=

1
0
0

− 1√
2

1/
√

2
1/

√
2

0

 (6)

=

 1/2
−1/2

0

 (7)

~v2 = ~z2

‖~z2‖2
(8)

=

 1/
√

2
−1/

√
2

0

 . (9)

1
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To find ~v3 we compute

~z3 = ~e2 − (~v>
1 ~e2)︸ ︷︷ ︸

=1/
√

2

~v1 − (~v>
2 ~e2)︸ ︷︷ ︸

=−1/
√

2

~v2 (10)

=

0
1
0

− 1√
2

1/
√

2
1/

√
2

0

+ 1√
2

 1/
√

2
−1/

√
2

0

 (11)

=

0
0
0

 = ~0. (12)

We hit a ~0 in the Gram-Schmidt process; we throw it away and move on to the next vector to compute ~v3.

~z4 = ~e3 − (~v>
1 ~e3)︸ ︷︷ ︸
=0

~v1 − (~v>
2 ~e3)︸ ︷︷ ︸
=0

~v2 (13)

=

0
0
1

 (14)

~v3 = ~z4

‖~z4‖2
= ~z4 =

0
0
1

 . (15)

Thus we have that

(~v1, ~v2, ~v3) =


1/

√
2

1/
√

2
0

 ,

 1/
√

2
−1/

√
2

0

 ,

0
0
1


 . (16)
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2. Diagonalization and Singular Value Decomposition

Let matrix A =
[

0 1
1
2

1
2

]
.

(a) Compute the eigenvalues and associated eigenvectors of A.

Solution: Eigenvalues can be computed by first calculating A’s characteristic polynomial:

det(sI − A) = det
([

s −1
− 1

2 s − 1
2

])
(17)

= s

(
s − 1

2

)
− (−1)

(
−1

2

)
(18)

= s2 − 1
2s − 1

2 (19)

=
(

s − 1
4

)2
− 1

16 − 1
2 (20)

=
(

s − 1
4

)2
− 9

16 (21)

=
(

s − 1
4 − 3

4

)(
s − 1

4 + 3
4

)
a2 − b2 = (a − b)(a + b) (22)

= (s − 1)
(

s + 1
2

)
. (23)

The eigenvalues of A are thus λ1 = 1 and λ2 = − 1
2 , the values of s at which det(sI − A) = 0.

The eigenvectors associated with each eigenvalue λ can be calculated as values of ~x =
[

xa

xb

]
for which

A~x = λ~x, namely:

A~x =
[

0 1
1
2

1
2

][
xa

xb

]
=
[

xb

xa+xb

2

]
(24)

A~x1 = ~x1 ⇐⇒ xb = xa ⇐⇒ ~x1 = α1

[
1
1

]
, α1 6= 0 ∈ R. (25)

A~x2 = −1
2~x2 ⇐⇒ xb = −1

2xa ⇐⇒ ~x2 = α2

[
1

− 1
2

]
, α2 6= 0 ∈ R. (26)

Note that the expressions above are valid eigenvectors for any nonzero values of α1 and α2.

(b) Express A as PΛP −1, where Λ is a diagonal matrix and PP −1 = I . State P , Λ, and P −1 explicitly.

Solution: Combining the calculations in part (a), we have that

A
[
~x1 ~x2

]
=
[
λ1~x1 λ2~x2

]
=
[
~x1 ~x2

] [λ1 0
0 λ2

]
. (27)

For our calculations, we will use the eigenvalues and eigenvectors from part (a) with α1 = α2 = 1. (Your
calculations may differ here; any nonzero values for α1 and α2 are permissible, and will result in scaled
values of P and P −1.) Filling in eigenvalue and eigenvector values, we have:

A

[
1 1
1 − 1

2

]
=
[

1 1
1 − 1

2

][
1 0
0 − 1

2

]
, (28)
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and rearranging,

A =
[

1 1
1 − 1

2

][
1 0
0 − 1

2

][
1 1
1 − 1

2

]−1

. (29)

Calculating the latter inverse explicitly, we have[
1 1
1 − 1

2

]−1

= −2
3

[
− 1

2 −1
−1 1

]
=
[

1
3

2
3

2
3 − 2

3

]
because

[
a b

c d

]−1

= 1
ad − bc

[
d −b

−c a

]
(30)

so finally,

A = PΛP −1 =
[

1 1
1 − 1

2

][
1 0
0 − 1

2

][
1
3

2
3

2
3 − 2

3

]
. (31)

This is known as the eigenvalue decomposition, or eigendecomposition, of matrix A; for a more extensive
description of this decomposition, see Calafiore & El Ghaoui section 3.5.

(c) Compute limk→∞ Ak.

Solution: Using the diagonalization of A from part (b), we have:

A = PΛP −1 (32)

Ak = (PΛP −1)k (33)

= (PΛP −1)(PΛP −1) . . . (PΛP −1) (k times) (34)

= PΛ P −1P︸ ︷︷ ︸
I

ΛP −1 . . . PΛP −1 (35)

= PΛkP −1 (36)

=
[

1 1
1 − 1

2

][
1 0
0 − 1

2

]k [ 1
3

2
3

2
3 − 2

3

]
(37)

=
[

1 1
1 − 1

2

][
1k 0
0

(
− 1

2
)k

][
1
3

2
3

2
3 − 2

3

]
. (38)

Finally, because lim
k→∞

(
− 1

2
)k = 0, we have

lim
k→∞

Ak =
[

1 1
1 − 1

2

][
1 0
0 0

][
1
3

2
3

2
3 − 2

3

]
=
[

1
3

2
3

1
3

2
3

]
= 1

3

[
1 2
1 2

]
. (39)

(d) Give the singular values σ1 and σ2 of A.

Solution: Each singular value σi of A can be calculated as σi =
√

λi(AA>) =
√

λi(A>A). (This
is because A’s singular value decomposition, canonically written A = UΣV >, can be multiplied by a
transposed version to give AA> = UΣ2U>, where Σ2 is a diagonal matrix containing the squared singular
values of A and UU> = I . For a thorough treatment of SVD, see Calafiore & El Ghaoui chapter 5.)

To find A’s singular values, we thus perform the same calculation used in part (a) to find each λi(AA>) =
σ2

i :

AA> =
[

0 1
1
2

1
2

][
0 1

2
1 1

2

]
(40)
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= 1
2

[
2 1
1 1

]
. (41)

det
(
(sI − AA>)

)
= det

([
s − 1 − 1

2
− 1

2 s − 1
2

])
(42)

= (s − 1)
(

s − 1
2

)
−
(

−1
2

)(
−1

2

)
(43)

= s2 − s − 1
2s + 1

2 − 1
4 (44)

= s2 − 3
2s + 1

4 (45)

=
(

s − 3
4

)2
− 9

16 + 1
4 (46)

=
(

s − 3
4

)2
− 5

16 (47)

=
(

s − 3
4 −

√
5

4

)(
s − 3

4 +
√

5
4

)
a2 − b2 = (a − b)(a + b) (48)

=
(

s − 3 +
√

5
4

)(
s − 3 −

√
5

4

)
(49)

= (s − σ2
1)(s − σ2

2). (50)

Thus, the singular values of A are σ1 =
√

3+
√

5
2 and σ2 =

√
3−

√
5

2 .
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3. Distinct Eigenvalues, Orthogonal Eigenspaces

Let A ∈ Sn (i.e., the set of n × n symmetric matrices) and (λ1, ~u1), (λ2, ~u2), λ1 6= λ2 be distinct eigen-pairs of
A. Show that ~u>

1 ~u2 = 0, i.e., eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.

HINT: First try to prove that λ1~u>
1 ~u2 = λ2~u>

1 ~u2, then show that this implies ~u>
1 ~u2 = 0.

NOTE: This exercise is part of the proof of the spectral theorem.

Solution: We have

λ1~u>
1 ~u2 = (λ1~u1)>~u2 (51)

= (A~u1)>~u2 (52)

= ~u>
1 A>~u2 (53)

= ~u>
1 A~u2 (54)

= ~u>
1 (λ2~u2) (55)

= λ2~u>
1 ~u2. (56)

Thus we have
λ1(~u>

1 ~u2) = λ2(~u>
1 ~u2) =⇒ (λ1 − λ2)(~u>

1 ~u2) = 0. (57)

Since λ1 6= λ2, we have λ1 − λ2 6= 0, so we must have ~u>
1 ~u2 = 0.

Thus, ~u>
1 ~u2 = 0 for any ~u1, ~u2 corresponding to different eigenvalues. Stated differently, unique eigenvalues

correspond to orthogonal eigenvectors.
This, in combination with the fact that the geometric multiplicity and algebraic multiplicity of a symmetric ma-

trix are equal, allows us to construct an orthonormal set of eigenvectors. First, find all the distinct eigenvalues and
their respective eigenvectors. Then, for all eigenvalues with algebraic multiplicity > 1, we know that the respective
eigenspace is spanned by k linearly independent eigenvectors. Utilizing Gram-Schmidt, we can construct an orthonor-
mal set of eigenvectors from this basis for this eigenspace. Putting the eigenvectors from these two cases together, we
have constructed the U matrix of the decomposition.
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4. Gram Schmidt

Any set of n linearly independent vectors in Rn could be used as a basis for Rn. However, certain bases could
be more suitable for certain operations than others. For example, an orthonormal basis could facilitate solving
linear equations.

(a) Given a matrix A ∈ Rn×n, it could be represented as a multiplication of two matrices

A = QR, (58)

where Q ∈ Rn×n is an orthonormal matrix and R ∈ Rn×n is an upper-triangular matrix. For the matrix
A, describe how Gram-Schmidt process could be used to find the Q and R matrices, and apply this to

A =

3 −3 1
4 −4 −7
0 3 3

 (59)

to find an orthonormal matrix Q and an upper-triangular matrix R.
Solution: Let ~ai and ~qi denote the columns of A and Q, respectively. Using Gram-Schmidt, we obtain an
orthonormal basis ~qi for the column space of A.

~p1 = ~a1, ~q1 = ~p1

‖~p1‖2
(60)

~p2 = ~a2 − (~a>
2 ~q1)~q1, ~q2 = ~p2

‖~p2‖2
(61)

~p3 = ~a3 − (~a>
3 ~q1)~q1 − (~a>

3 ~q2)~q2, ~q3 = ~p3

‖~p3‖2
(62)

... (63)

Rearranging terms, we have

~a1 = r11~q1 (64a)

~ai = ri1~q1 + · · · + rii~qi, i = 2, ..., n, (64b)

where each ~qi has unit norm, and rij~qj denotes the projection of ~ai onto the vector ~qj for j 6= i.
Stacking ~ai horizontally into A and rewriting (64a-b) in matrix notation, we obtain A = QR. For the given
matrix, we have

A =

0.6 0 0.8
0.8 0 −0.6
0 1 0


5 −5 −5

0 3 3
0 0 5

 . (65)

Note that an equivalent factorization is A = (−Q)(−R).

(b) Given an invertible matrix A ∈ Rn×n and an observation vector~b ∈ Rn, the solution to the equality

A~x = ~b (66)

is given as ~x = A−1~b. For the matrix A = QR from part (a), assume that we want to solve

A~x =

 8
−6
3

 . (67)
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By using the fact that Q is an orthonormal matrix, find ~v such that

R~x = ~v. (68)

Then, given the upper-triangular matrix R in part (a) and ~v, find the elements of ~x sequentially.

Solution: We note that Q−1 = Q>.

A~x = ~b (69)

QR~x = ~b (70)

Q>QR~x = R~x = Q>~b. (71)

Thus

~v = Q>~b =

 0
3
10

 . (72)

Given R and ~v, we can find ~x by back-substitution:5 −5 −5
0 3 3
0 0 5


x1

x2

x3

 =

 0
3
10

 =⇒ x3 = 2 =⇒ x2 = −1 =⇒ x1 = 1 =⇒ ~x =

 1
−1
2

 . (73)

(c) Given an invertible matrix B ∈ Rn×n and an observation vector ~c ∈ Rn, find the computational cost of
finding the solution ~z to the equation B~z = ~c by using the QR decomposition of B. Assume that Q and R

matrices are available, and adding, multiplying, and dividing scalars take one unit of “computation”.

As an example, computing the inner product ~a>~b is said to be O(n), since we have n scalar multiplication
for each aibi. Similarly, matrix vector multiplication is O(n2), since matrix vector multiplication can be
viewed as computing n inner products. The computational cost for inverting a matrix in Rn is O(n3), and
consequently, the cost grows rapidly as the set of equations grows in size. This is why the expression A−1~b

is usually not computed by directly inverting the matrix A. Instead, the QR decomposition of A is exploited
to decrease the computational cost.

Solution: We count the number of operations in back substitution. Solving the initial equation

rnnxn = b̄n (74)

takes 1 multiplication. Solving each subsequent equation takes one more multiplication and one more
addition than the previous. In total, we have 1 + 3 + 5 + · · · of operations, which is on the order of O(n2).
Thus, matrix multiplication and back substitution are both O(n2). Given the QR decomposition of A, we
can solve A~x = ~b in O(n2) times.
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5. Eigenvectors of a Symmetric Matrix

Let ~p, ~q ∈ Rn be two linearly independent vectors, with unit norm (‖~p‖2 = ‖~q‖2 = 1). Define the symmetric
matrix A := ~p~q> + ~q~p>. In your derivations, it may be useful to use the notation c := ~p>~q.

(a) Show that A is symmetric.

Solution: We have
A> = (~p~q> + ~q~p>)> = ~q~p> + ~p~q> = A. (75)

(b) Show that ~p + ~q and ~p − ~q are eigenvectors of A, and determine the corresponding eigenvalues.

Solution: We have
A~p = c~p + ~q, A~q = ~p + c~q, (76)

from which we obtain

A(~p − ~q) = (c − 1)(~p − ~q), A(~p + ~q) = (c + 1)(~p + ~q). (77)

Thus ~u± := ~p ± ~q is an (un-normalized) eigenvector of A, with eigenvalue c ± 1.

(c) Determine the nullspace and rank of A.

Solution: If ~x ∈ Rn is in the nullspace of A we must have: A~x = 0.

0 = A~x = ~p(~q>~x) + ~q(~p>~x). (78)

Since (~q>~x) and (~p>~x) are scalars we can rewrite this as:

0 = A~x = (~q>~x)~p + (~p>~x)~q = 0. (79)

However, since ~p, ~q are linearly independent, the fact that a linear combination of ~p, ~q is zero implies that
~p>~x = ~q>~x = 0. Hence, the nullspace of A is the set of vectors orthogonal to ~p and ~q, i.e., N (A) =
span(~p, ~q)⊥. We have from the fundamental theorem of linear algebra and the fact that A is symmetric,

R(A) = R
(
A>) = N (A)⊥ = (span(~p, ~q)⊥)⊥ = span(~p, ~q). (80)

And since p and q are linearly independent, rank(A) = 2.

(d) Find an eigenvalue decomposition of A, in terms of ~p, ~q. HINT: Use the previous two parts.

Solution: Since the rank is 2, we need to find a total of two non-zero eigenvalues. First, we check that
λ = c±1 is not 0. We have ~p−~q 6= 0 which implies ‖~p − ~q‖2

2 > 0 which means ‖~p‖2
2 +‖~q‖2

2 −2~p>~q > 0.
Therefore, we have c < 1 and through a similar proof with ~p + ~q, we have −c < 1. From these two facts,
we get |c| < 1. Thus, we have found two linearly independent eigenvectors ~u± = ~p ± ~q that do not belong
to the nullspace. Then, the eigenvalue decomposition is

A = (c − 1)~v−~v>
− + (c + 1)~v+~v>

+ , (81)

where ~v± are the normalized vectors ~v± = ~u±/ ‖~u±‖2.

It is fine to have this kind of answer, but we can actually simplify it further. Since

‖~p ± ~q‖2
2 = ~p>~p ± 2~p>~q + ~q>~q = 2(1 ± c), (82)
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we have
~v± = 1√

2(1 ± c)
(~p ± ~q), (83)

so that the eigenvalue decomposition becomes

A = 1
2
(
(~p + ~q)(~p + ~q)> − (~p − ~q)(~p − ~q)>) . (84)

Note that this form removes explicit dependence on c = ~p>~q.
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6. PSD Matrices

In this problem, we will analyze properties of positive semidefinite (PSD) matrices. A symmetric matrix M ∈
Rn×n is a PSD matrix if ~x>M~x ≥ 0 for all ~x ∈ Rn, and we denote that as M � 0 or M ∈ Sn

+.

Assume A ∈ Rn×n is a symmetric matrix.

(a) Show that A � 0 if and only if all eigenvalues of A are non-negative.

Solution: =⇒ :

i. Solution 1: We can plug in the Spectral Decomposition here:

~x>A~x = ~x>UΣU>~x = ~v>Σ~v ≥ 0, (85)

where ~v := U>~x is a rotated version of ~x since U is orthonormal. Now, we just need to convert that
final quadratic into any eigenvalue of A, and we can do that by choosing a ~v that pulls out whichever
eigenvalue we want (e.g. if we want the first eigenvalue, we can choose the first unit vector). To be
thorough, we can then realize that the set of ~x’s such that U>~x = ~ei for any unit vector, will pull out
the ith eigenvalue, thus satisfying definition 2.

ii. Solution 2: We can just use the definition of an eigenvalue:

~x>A~x = ~xλ~x = λ~x>~x = λ ‖~x‖2
2 (86)

Since norms/anything squared is always non-negative, in order forλ ‖~x‖2
2 ≥ 0, λmust be non-negative.

⇐=: Using the Spectral Decomposition again, we arrive at the equation ~v>Σ~v, which we can expand
further:

~v>Σ~v =
∑

i

λiv
2
i ≥ 0, (87)

where the last inequality came from the fact that anything squared is non-negative and all eigenvalues are
non-negative by assumption of the problem.

(b) Show that if A � 0 then all diagonal entries of A are non-negative, Aii ≥ 0.
Solution: The quadratic form ~x>A~x ≥ 0 applies for all vectors ~x. Therefore, let’s choose a vector that will
pull out Aii: the ith unit vector. A~ei pulls out the ith column ~ai, followed by ~e>

i ~ai, which will pull out the
ith element of the ith column. Therefore, ~e>

i A~ei = Aii ≥ 0.

Now we will show that A ∈ Sn
+ (i.e., A ∈ Rn×n and A � 0) if and only if there exists P ∈ Sn

+ such that
A = P >P = P 2. Such a matrix P is known as a PSD square root of A.

(c) First, show that if A ∈ Sn
+, then there exists P ∈ Sn

+ such that A = P 2.

Solution: Since A is symmetric positive semidefinite, A has non-negative eigenvalues. Thus, we can
diagonalize A as A = UΣU>, where the diagonal matrix of eigenvalues Σ has all non-negative entries on
the diagonal. Then, we are able to define a matrix A

1
2 = UΣ 1

2 U>, where Σ 1
2 is a diagonal matrix with

the square roots of A’s eigenvalues. Note that A
1
2 is PSD since its eigenvalues are still non-negative. Thus,

with P = A
1
2 , we can show the following:

P >P = (A 1
2 )>A

1
2 = (UΣ 1

2 U>)>UΣ 1
2 U> = UΣ 1

2 U>UΣ 1
2 U> = UΣ 1

2 Σ 1
2 U> = UΣU> = A. (88)
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(d) Now, show that for any matrix Q ∈ Rm×n, if A = Q>Q then A ∈ Sn
+.

NOTE: If we take Q = P ∈ Sn
+, we have A = P 2 ∈ Sn

+; this proves the other direction of the above
“if-and-only-if.”

Solution: We can plug in A = Q>Q into the quadratic form as follows:

~x>A~x = ~x>Q>Q~x = (Q~x)>(Q~x) = ‖Q~x‖2
2 ≥ 0. (89)

Wewill use positive semidefinitematrices to construct the singular value decomposition (SVD). One can construct
the SVD of a matrix B ∈ Rm×n in two ways, using either the matrices BB> ∈ Rm×m or B>B ∈ Rn×n, and
usually one chooses themethod depending onwhichmatrix is smaller. The following result shows that the singular
values will be the same no matter what construction you use.

(e) Let B ∈ Rm×n be an arbitrary matrix (not necessarily PSD or even square). From the previous parts of
this problem, BB> and B>B are PSD, thus having real non-negative eigenvalues. Prove that the non-zero
eigenvalues of BB> are the same as the non-zero eigenvalues of B>B.

Solution: Say λ 6= 0, ~v is an eigenpair of B>B which is a n × n matrix. Hence,

(B>B)~v = λ~v (90)

Multiply both sides with B, to get,

B(B>B)~v = B(λ~v) (91)

(BB>)B~v = λB~v (92)

As λ 6= 0 and ~v 6= ~0, we have λ~v 6= ~0 and so, (B>B)~v 6= ~0. Thus B>(B~v) 6= ~0, which implies that
B~v 6= ~0. Therefore, B~v is an eigenvector of BB> corresponding to λ. Similarly, we can show that every
non-zero eigenvalue of BB> is an eigenvalue of B>B and we are done.
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7. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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