
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 5

Self grades are due at 11 PM on February 23, 2024.

1. Matrix Norm Calculations

Let A have SVD equal to

A =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

][
4 0
0 2

][
0 1
1 0

]
. (1)

(a) Compute ∥A∥F , the Frobenius norm of A.

Solution: We have ∥A∥F =
√

σ1{A}2 + σ2{A}2, i.e., the square root of the sum of squared singular
values of A, which gives

∥A∥F =
√

42 + 22 =
√

20 = 2
√

5. (2)

(b) Compute ∥A∥2, the spectral norm of A.

Solution: We have ∥A∥2 = σ1{A}, i.e., the largest singular value of A, which gives ∥A∥2 = 4.

1

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

2. PCA and low-rank compression

We have a data matrix X =


x⃗⊤

1

x⃗⊤
2
...

x⃗⊤
n

 of size n × d containing n data points1, x⃗1, x⃗2, . . . , x⃗n, with x⃗i ∈ Rd. Note

that x⃗⊤
i is the ith row of X . Assume that the data matrix is centered, i.e. each column of X is zero mean. In this

problem, we will show equivalence between the following three problems:

(P1) Finding a line going through the origin that maximizes the variance of the scalar projections of the points
on the line. Formally P1 solves the problem:

argmax
u⃗∈Rd:u⃗⊤u⃗=1

u⃗⊤Cu⃗ (3)

with C = 1
n

n∑
i=1

x⃗ix⃗
⊤
i denoting the covariance matrix associated with the centered data.

(P2) Finding a line going through the origin that minimizes the sum of squares of the ℓ2 distances from the
points to their vector projections. Formally P2 solves the minimization problem:

argmin
u⃗∈Rd:u⃗⊤u⃗=1

n∑
i=1

min
vi∈R

∥x⃗i − viu⃗∥2
2 . (4)

Note that the vector projection of x⃗ on u⃗ is given by v⋆u⃗, where

v⋆ = argmin
v∈R

∥x⃗ − vu⃗∥2
2 , (5)

and we will show that v⋆ = ⟨x⃗, u⃗⟩ in part (a).

(P3) Finding a rank-one approximation to the data matrix. Formally P3 solves the minimization problem:

argmin
Y :rank(Y)≤1

∥X − Y ∥F . (6)

Note that loosely speaking, two problems are said to be “equivalent" if the solution of one can be “easily"
translated to the solution of the other. Some form of “easy" translations include adding/subtracting a constant or
some quantity depending on the data points.

Note the significance of these results. P1 is finding the first principal component of X , the direction that
maximizes variance of scalar projections. P2 says that this direction also minimizes the distances between the
points to their vector projections along this direction. If we view the distances as errors in approximating the
points by their projections along a line, then the error is minimized by choosing the line in the same direction
as the first principal component. Finally P3 tells us that finding a rank one matrix to best approximate the data
matrix (in terms of error computed using Frobenius norm) is equivalent to finding the first principal component
as well!

(a) Consider the line L = {x⃗0 + au⃗ : a ∈ R}, with x⃗0 ∈ Rd, u⃗⊤u⃗ = 1. Recall that the vector projection of a
point x⃗ ∈ Rd on to the line L is given by z⃗ = x⃗0 + a⋆u⃗, where a⋆ is given by:

1Data matrices are sometimes represented as above, and sometimes as the transpose of the matrix here. Make sure you always check this, and
recall that based on the definition of the data matrix, the definition of the covariance matrix also changes.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

a⋆ = argmin
a

∥x⃗0 + au⃗ − x⃗∥2 . (7)

Show that a⋆ = (x⃗ − x⃗0)⊤u⃗. Use this to show that the square of the distance between x and its vector
projection on L is given by:

∥x⃗ − z⃗∥2
2 = ∥x⃗ − x⃗0∥2

2 − ((x⃗ − x⃗0)⊤u⃗)2. (8)

Solution: The projection of point x⃗ on L corresponds to the following problem:

a⋆ = min
a

∥x⃗0 + au⃗ − x⃗∥2 . (9)

The squared objective writes

∥x⃗0 + au⃗ − x⃗∥2
2 = a2 − 2a(x⃗ − x⃗0)⊤u⃗ + ∥x⃗ − x⃗0∥2

2 . (10)

By taking the derivative of the above expression with respect to a and setting it to 0, we obtain the optimal
value of a as

a⋆ = (x⃗ − x⃗0)⊤u⃗. (11)

The square of the distance between x⃗ and its vector projection on L (z⃗) is given by ∥z⃗ − x⃗∥2
2. We have

shown that z⃗ = x⃗0 + a⋆u⃗ = x⃗0 + [(x⃗ − x⃗0)⊤u⃗]u⃗. At optimum, the squared objective function, which
equals the minimum squared distance ∥z⃗ − x⃗∥2

2, takes the desired value:∥∥x⃗0 + [(x⃗ − x⃗0)⊤u⃗]u⃗ − x⃗
∥∥2

2 = ∥x⃗ − x⃗0∥2
2 − ((x⃗ − x⃗0)⊤u⃗)2. (12)

(b) Show that P2 is equivalent to P1.

HINT: Start with P2 and using the result from part (a) show that it is equivalent to P1.

Solution: From part (a), we have the following decomposition of P2:

argmin
u⃗∈Rd:u⃗⊤u⃗=1

n∑
i=1

min
vi∈R

∥x⃗i − viu∥2
2 = argmin

u⃗∈Rd:u⃗⊤u⃗=1

n∑
i=1

∥x⃗i∥2
2 − (x⃗⊤

i u⃗)2 (13)

= argmax
u⃗∈Rd:u⃗⊤u⃗=1

n∑
i=1

u⃗⊤x⃗ix⃗
⊤
i u⃗ (14)

= argmax
u⃗∈Rd:u⃗⊤u⃗=1

u⃗⊤Cu⃗. (15)

From the above equation, we see that a solution for P1 constitutes a solution for P2 and vice-versa.

(c) Show that every matrix Y ∈ Rn×d with rank at most 1, can be expressed as Y = v⃗u⃗⊤ for some v⃗ ∈ Rn,
u⃗ ∈ Rd and ∥u⃗∥2 = 1.

Solution: First, consider the case where Y is rank-0. If Y is rank 0, all of its all of its singular values must
be 0 and hence, Y must be the 0 matrix. Therefore, we can express Y = v⃗u⃗⊤ by setting v⃗ = 0 and u⃗ being
any arbitrary unit-length vector.

Now let Y be a rank 1 matrix. Then its has the following SVD: Y = σw⃗u⃗⊤ where σ ̸= 0. It follows that
Y = v⃗u⃗⊤ for v⃗ = σw⃗.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

(d) Show that P3 is equivalent to P2.

HINT: Use the result from part (c) to show that P3 is equivalent to:

argmin
u⃗∈Rd:u⃗⊤u⃗=1,v⃗∈Rn

∥∥X − v⃗u⃗⊤∥∥2
F

(16)

Prove that this is equivalent to P2.

Solution: From the previous part, we have that the set of matrices, Y , with rank at most 1 is equivalent to
the set {v⃗u⃗⊤ : ∥u⃗∥ = 1, u⃗ ∈ Rd, v⃗ ∈ Rn}. Therefore, we may equivalently reformulate P3 as:

argmin
u⃗∈Rd:u⃗⊤u⃗=1,v⃗∈Rn

∥∥X − v⃗u⃗⊤∥∥2
F

. (17)

X is a matrix with rows x⃗⊤
i , and v⃗u⃗⊤ is a matrix with rows viu⃗

⊤. We expand the Frobenius norm in the
objective in the above equation as

∥∥X − v⃗u⃗⊤∥∥2
F

=
n∑

i=1
∥x⃗i − viu⃗∥2

2 , (18)

i.e., express the matrix norm as a sum of vector norms, which follows from the definition of the Frobenius
norm.

With this reformulation, we see that any solution (u⃗⋆, v⃗⋆) must satisfy

v⃗⋆ = argmin
v⃗

n∑
i=1

∥x⃗i − viu⃗∥2
2 , u⃗⋆ = argmin

u⃗

n∑
i=1

∥x⃗i − v⋆
i u⃗∥2

2 (19)

i.e., we can minimize it over u⃗, v⃗ sequentially. We separate the minimization over u⃗ and v⃗ to get

u⃗⋆ = argmin
u⃗∈Rd:u⃗⊤u⃗=1

min
v⃗∈Rn

n∑
i=1

∥x⃗i − viu⃗∥2
2 (20)

We now have a minimization of a sum of squares of vector norms ∥x⃗i − viu⃗∥2
2, each of which depends

only on a single element of v⃗, i.e., vi.

Note: The objective of an optimization problem minx,y f(x, y) is said to be separable when the objective
can be written as a sum of two functions- one which depends on x, and one on y, i.e.,

min
x,y

f(x, y) = min
x,y

[g(x) + h(y)]. (21)

If the objective is separable, we can solve the problem separately across the two variables, and

(x⋆, y⋆) = argmin
x,y

f(x, y) = (argmin
x

g(x), argmin
y

h(y)). (22)

We can split the minimization problem in 20 over each individual vi. We have

u⃗⋆ = argmin
u⃗∈Rd:u⃗⊤u⃗=1

n∑
i=1

min
vi∈R

∥x⃗i − viu⃗∥2
2 . (23)

Therefore, u⃗⋆ is also a solution to P2.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

3. Operator Norms

For a matrix A ∈ Rm×n, the induced norm or operator norm ∥A∥p is defined as

∥A∥p

.= max
x̸⃗=0⃗

∥Ax⃗∥p

∥x⃗∥p

. (24)

In this problem, we provide a characterization of the induced norm for certain values of p. Let aij denote the
(i, j)-th entry of A. Prove the following:

(a) ∥A∥2 = σmax{A}, the maximum singular value of A. HINT: Consider connecting ∥A∥2
2 to a particular

Rayleigh coefficient.

Solution: Approach 1: Rayleigh Coefficient
We have

∥A∥2
2 =

(
max
x̸⃗=0⃗

∥Ax⃗∥2
∥x⃗∥2

)2
(25)

= max
x̸⃗=0⃗

∥Ax⃗∥2
2

∥x⃗∥2
2

(26)

= max
x̸⃗=0⃗

(Ax⃗)⊤(Ax⃗)
x⃗⊤x⃗

(27)

= max
x̸⃗=0⃗

x⃗⊤A⊤Ax⃗

x⃗⊤x⃗
(28)

= λmax{A⊤A} (29)

= σmax{A}2. (30)

Taking square roots gives the solution.

Approach 2: SVD
Write A = UΣV ⊤. Then

∥A∥2 = max
x̸⃗=0⃗

∥Ax⃗∥2
∥x⃗∥2

(31)

= max
x̸⃗=0⃗

∥∥UΣV ⊤x⃗
∥∥

2
∥x⃗∥2

. (32)

Here we use the fact that multiplying by the square orthonormal matrix U does not change the norm, so we
have

∥A∥2 = max
x̸⃗=0⃗

∥∥ΣV ⊤x⃗
∥∥

2
∥x⃗∥2

. (33)

Now we do the change of basis z⃗ = V ⊤x⃗, i.e., x⃗ = V z⃗. Thus, we have

∥A∥2 = max
x̸⃗=0⃗

z⃗=V ⊤x⃗

∥Σz⃗∥2
∥V z⃗∥2

. (34)

Since V is square orthonormal, multiplying by it does not change the norm, so we have

∥A∥2 = max
x̸⃗=0⃗

z⃗=V ⊤x⃗

∥Σz⃗∥2
∥z⃗∥2

. (35)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

Finally, we make the crucial realization that since V is square orthonormal, it is invertible. Since we can
always get x⃗ from z⃗ and z⃗ from x⃗, it is sufficient to optimize directly over z⃗. Thus,

∥A∥2 = max
z⃗ ̸=0⃗

∥Σz⃗∥2
∥z⃗∥2

. (36)

Finally, we evaluate this maximum, or rather its square (and take square roots afterwards). Suppose without
loss of generality that σ1{A} ≥ σ2{A} ≥ · · ·. We have

∥Σz⃗∥2
2

∥z⃗∥2
2

= z⃗⊤Σ⊤Σz⃗

z⃗⊤z⃗
(37)

=
∑

i σi{A}2z2
i∑

i z2
i

(38)

=
∑

i

σi{A}2 · z2
i∑

j z2
j

. (39)

This is maximized when z2
1 = 1 and all other entries are 0, so z⃗ = ±e⃗1. In this case we have that

∥Σz⃗∥2
2

∥z⃗∥2
2

= σ1{A}2 = σmax{A}2. (40)

Thus we have
∥A∥2 = max

z⃗ ̸=0⃗

∥Σz⃗∥2
∥z⃗∥2

= σmax{A} (41)

as claimed.

(b) ∥A∥1 is the maximum absolute column sum of A,

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij | . (42)

HINT: Write Ax⃗ as a linear combination of the columns of A to obtain ∥Ax⃗∥1 = ∥
∑n

i=1 xi · a⃗i∥1, where
a⃗i denotes the i-th column of A. Then apply triangle inequality to terms within the sum.

Solution: We denote the columns of A to be
[
a⃗1 · · · a⃗n

]
. Then, for any x ∈ Rn, we have that

∥Ax⃗∥1 =

∥∥∥∥∥
n∑

i=1
xi · a⃗i

∥∥∥∥∥
1

≤
n∑

i=1
∥xi · a⃗i∥1 (Triangle Inequality) (43)

=
n∑

i=1
|xi| · ∥a⃗i∥1 (|xi| can come out of norm (44)

≤

(
n∑

i=1
|xi|

)
· max

i
∥a⃗i∥1 (∥a⃗j∥1 ≤ max

i
∥a⃗i∥1 , ∀j) (45)

= ∥x⃗∥1 · max
i

∥a⃗i∥1. (46)

We see that ∥A∥1 = maxx̸⃗=0⃗
∥Ax⃗∥1
∥x⃗∥1

≤ maxi ∥a⃗i∥1.

Next we show that we can achieve this upper bound by choosing x⃗ = e⃗i where i is the index for the column

of A such that a⃗i has the maximum column sum, and this vector gives
∥Ax⃗∥1
∥x⃗∥1

= maxi ∥a⃗i∥1. Therefore,

we obtain ∥A∥1 as the maximum absolute column sum of A.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

(c) (OPTIONAL) ∥A∥∞ is the maximum absolute row sum of A,

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij | . (47)

HINT: First write ∥Ax⃗∥∞ = maxi

∣∣∣∑n
j=1 aijxj

∣∣∣. Then apply triangle inequality and use the fact that
|xj | ≤ maxi |xi|, ∀j.

Solution: We have,

∥Ax⃗∥∞ = max
i

∣∣∣∣∣∣
n∑

j=1
aijxj

∣∣∣∣∣∣ (48)

≤ max
i

n∑
j=1

|aijxj | (Triangle Inequality) (49)

≤ max
i

[
max

j
|xj |
(n∑

j=1
|aij |

)]
(|xj | ≤ max

j
|xj |, ∀j) (50)

=

max
i

n∑
j=1

|aij |

 ∥x⃗∥∞ . (51)

Thus, we have

∥A∥∞ = max
x̸⃗=0⃗

∥Ax⃗∥∞
∥x⃗∥∞

≤ max
i

n∑
j=1

|aij |. (52)

Assume that the index of the maximum absolute row sum is m. We can construct a vector x⃗ such that
xj = 1 if amj ≥ 0, and xj = −1 if amj < 0. This leads to

∥Ax⃗∥∞ = max
i

∣∣∣∣∣∣
n∑

j=1
aijxj

∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
n∑

j=1
amjxj

∣∣∣∣∣∣ =
n∑

j=1
|amj | . (53)

Since ∥x⃗∥∞ = 1, the resulting
∥Ax⃗∥∞
∥x⃗∥∞

= max1≤i≤m

∑n
j=1 |aij | as desired.

This shows that ∥A∥∞ = maximum absolute row sum.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

4. Gradients, Jacobians, and Hessians

The gradient of a scalar-valued function g : Rn → R is the column vector of length n, denoted as ∇g, containing
the derivatives of components of g with respect to the input variables:

(∇g(x⃗))i = ∂g

∂xi
(x⃗), i = 1, . . . n. (54)

The Hessian of a scalar-valued function g : Rn → R is the n × n matrix, denoted as ∇2g, containing the second
derivatives of components of g with respect to the input variables:

(∇2g(x⃗))ij = ∂2g

∂xi∂xj
(x⃗), i = 1, . . . , n, j = 1, . . . , n. (55)

The Jacobian of a vector-valued function g⃗ : Rn → Rm is the m × n matrix, denoted as Dg⃗, containing the
derivatives of components of g⃗ with respect to the input variables:

(Dg⃗(x⃗))ij = ∂gi

∂xj
(x⃗), i = 1, . . . , m, j = 1, . . . , n. (56)

For the remainder of the class, we will repeatedly have to take gradients, Hessians and Jacobians of functions we
are trying to optimize. This exercise serves as a warm up for future problems.

For the first two parts, suppose A ∈ Rn×n is a square matrix whose entries are denoted aij and whose rows are
denoted a⃗⊤

1 , . . . , a⃗⊤
n , and b⃗ ∈ Rn is a vector whose entries are denoted bi.

(a) Compute the Jacobians for the following functions.

i. g⃗(x⃗) = Ax⃗.
Solution: We compute each partial derivative and reconstitute Dg⃗ at the end. That is,

[Dg⃗(x⃗)]jk = ∂gj

∂xk
(x⃗) (57)

= ∂(Ax⃗)j

∂xk
(58)

=
∂(⃗a⊤

j x⃗)
∂xk

(59)

= (⃗aj)k (60)

= ajk (61)

= [A]jk, (62)

where [A]jk is the (j, k)th entry of A. Thus Dg⃗(x⃗) = A.

ii. g⃗(x⃗) = f(x⃗)x⃗ where f : Rn 7→ R is differentiable.
Solution: We again compute each partial derivative using the scalar product rule, obtaining

[Dg⃗(x⃗)]jk = ∂gj

∂xk
(x⃗) (63)

= ∂(f(x⃗)xj)
∂xk

(64)

= f(x⃗) ∂xj

∂xk
+ xj

∂f

∂xk
(x⃗) (65)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

= xj [∇f(x⃗)]k +

f(x⃗), if j = k

0, if j ̸= k.
(66)

This gives a Jacobian whose entries are

[Dg⃗(x⃗)]jk = xj [∇f(x⃗)]k, ∀j ̸= k (67)

[Dg⃗(x⃗)]jj = xj [∇f(x⃗)]k + f(x⃗), ∀j. (68)

For the purpose of self-grades it is fine to stop here. But one can also write the Jacobian as

Dg⃗(x⃗) = x⃗[∇f(x⃗)]⊤ + f(x⃗)I. (69)

iii. g⃗(x⃗) = f(Ax⃗ + b⃗)x⃗ where f : Rn 7→ R is differentiable.
Solution: We compute each partial derivative using the scalar product rule and chain rule, obtaining

[Dg⃗(x⃗)]jk = ∂gj

∂xk
(x⃗) (70)

= ∂f(Ax⃗ + b⃗)xj

∂xk
(71)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj

∂f(Ax⃗ + b⃗)
∂xk

(72)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj

n∑
ℓ=1

∂f(Ax⃗ + b⃗)
∂(Ax⃗ + b⃗)ℓ

· ∂(Ax⃗ + b⃗)ℓ

∂xk
(73)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj

n∑
ℓ=1

[∇f(Ax⃗ + b⃗)]ℓ · ∂(⃗a⊤
ℓ x⃗ + bℓ)
∂xk

(74)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj

n∑
ℓ=1

[∇f(Ax⃗ + b⃗)]ℓ · (⃗aℓ)k (75)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj

n∑
ℓ=1

[∇f(Ax⃗ + b⃗)]ℓ · aℓk (76)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj

n∑
ℓ=1

[∇f(Ax⃗ + b⃗)]ℓ · [A⊤]kℓ (77)

= f(Ax⃗ + b⃗) ∂xj

∂xk
+ xj [A⊤∇f(Ax⃗ + b⃗)]k (78)

= xj [A⊤∇f(Ax⃗ + b⃗)]k +

f(Ax⃗ + b⃗), if j = k

0 if j ̸= k.
(79)

This gives a Jacobian whose entries are

[Dg⃗(x⃗)]jk = xj [A⊤∇f(Ax⃗ + b⃗)]k, ∀j ̸= k (80)

[Dg⃗(x⃗)]jj = xj [A⊤∇f(Ax⃗ + b⃗)]k + f(Ax⃗ + b⃗), ∀j. (81)

For the purpose of self-grades it is fine to stop here. But one can also write the Jacobian as

Dg⃗(x⃗) = x⃗[A⊤∇f(Ax⃗ + b⃗)]⊤ + f(Ax⃗ + b⃗)I (82)

= x⃗[∇f(Ax⃗ + b⃗)]⊤A + f(Ax⃗ + b⃗)I. (83)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

(b) Compute the gradients and Hessians for the following functions.

i. g1(x⃗) = x⃗⊤Ax⃗.
Solution: We have

g1(x⃗) = x⃗⊤Ax⃗ (84)

= x⃗⊤


a⃗⊤

1
...

a⃗⊤
n

 x⃗ (85)

= x⃗⊤


a⃗⊤

1 x⃗
...

a⃗⊤
n x⃗

 (86)

=
n∑

i=1
xi(⃗a⊤

i x⃗). (87)

Taking the derivative with respect to any xj yields

∂g1

∂xj
(x⃗) = ∂

∂xj

n∑
i=1

xi(⃗a⊤
i x⃗) (88)

= ∂

∂xj

xj (⃗a⊤
j x⃗) +

n∑
i=1
i ̸=j

xi(⃗a⊤
i x⃗)

 (89)

= ∂

∂xj
xj (⃗a⊤

j x⃗) +
n∑

i=1
i ̸=j

∂

∂xj
xi(⃗a⊤

i x⃗) (90)

= xj
∂

∂xj
(⃗a⊤

j x⃗) + a⃗⊤
j x⃗ +

n∑
i=1
i ̸=j

xi
∂

∂xj
(⃗a⊤

i x⃗) (91)

= xj (⃗aj)j + a⃗⊤
j x⃗ +

n∑
i=1
i ̸=j

xi(⃗ai)j (92)

= a⃗⊤
j x⃗ +

n∑
i=1

xi(⃗ai)j (93)

=
n∑

i=1
ajixi +

n∑
i=1

aijxi (94)

= (Ax⃗)j + (A⊤x⃗)j (95)

= [(A + A⊤)x⃗]j . (96)

Thus we have
∇g1(x⃗) = (A + A⊤)x⃗. (97)

For the Hessian, notice that

[∇2g1(x⃗)]jk = ∂2g1

∂xj ∂xk
(x⃗) (98)

= ∂[∇g1]j
∂xk

(x⃗) (99)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

= ∂

∂xk

[
n∑

i=1
ajixi +

n∑
i=1

aijxi

]
(100)

=
[

n∑
i=1

∂

∂xk
ajixi +

n∑
i=1

∂

∂xk
aijxi

]
(101)

= ajk + akj (102)

= (A + A⊤)jk. (103)

Thus we have
∇2g1(x⃗) = A + A⊤. (104)

Notice the important special case that if A is symmetric then ∇g1(x⃗) = 2Ax⃗ and ∇2g1(x⃗) = 2A.

ii. g2(x⃗) = ∥x⃗∥2
2.

Solution: We take A = I in g1, obtaining

∇g2(x⃗) = 2x⃗ and ∇2g2(x⃗) = 2I. (105)

iii. g3(x⃗) = g2(Ax⃗ − b⃗) = ∥Ax⃗ − b⃗∥2
2. (Use the chain rule and the Jacobians computed in part (a).)

Solution: As required, we use the chain rule: we compute

∇g3(x⃗) = [Dg3(x⃗)]⊤ (106)

= ([Dg2(Ax⃗ − b⃗)][D(Ax⃗ − b⃗)])⊤ (107)

= ([∇g2(Ax⃗ − b⃗)]⊤[D(Ax⃗ − b⃗)])⊤ (108)

= [D(Ax⃗ − b⃗)]⊤[∇g2(Ax⃗ − b⃗)] (109)

= [A]⊤[2(Ax⃗ − b⃗)] (110)

= 2A⊤(Ax⃗ − b⃗). (111)

For the Hessian, note that

∇2g3(x⃗) = D[∇g3(x⃗)] (112)

= D[2A⊤(Ax⃗ − b⃗)] (113)

= 2D[A⊤Ax⃗ − A⊤b⃗] (114)

= 2A⊤A. (115)

iv. g4(x⃗) = log(
∑n

i=1 exi).
Solution: We use component-wise derivatives and the scalar-valued chain rule:

∂g4

∂xj
(x⃗) = ∂

∂xj
log
(

n∑
i=1

exi

)
(116)

=
∂

∂xj

∑n
i=1 exi∑n

i=1 exi
(117)

=
∑n

i=1
∂

∂xj
exi∑n

i=1 exi
(118)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

= exj∑n
i=1 exi

. (119)

Thus the gradient is of the form

∇g4(x⃗) =


∂g4/∂x1 (x⃗)

...
∂g4/∂xn (x⃗)

 = 1∑n
i=1 exi


ex1

...
exn

 . (120)

The Hessian is computed using more component-wise derivatives and the scalar quotient rule:

∂2g4

∂xj ∂xk
(x⃗) = ∂

∂xk

(
∂g4

∂xj

)
(x⃗) (121)

= ∂

∂xk

exj∑n
i=1 exi

(122)

=
(
∑n

i=1 exi) ∂
∂xk

exj − exj ∂
∂xk

(
∑n

i=1 exi)
(
∑n

i=1 exi)2 (123)

=
(
∑n

i=1 exi) ∂
∂xk

exj − exj exk

(
∑n

i=1 exi)2 (124)

= − exj+xk

(
∑n

i=1 exi)2 +


exk∑n

i=1
exi

, if j = k

0, if j ̸= k.
(125)

This is the (i, j)th coordinate of the Hessian, whose entries can be defined as

[∇2g4(x⃗)]jk = − exj+xk

(
∑n

i=1 exi)2 ∀j ̸= k (126)

and [∇2g4(x⃗)]jj = exk∑n
i=1 exi

− exj+xk

(
∑n

i=1 exi)2 ∀j. (127)

For the purpose of self-grades, the above solution is fine, but we we can also write the Hessian as

∇2g4(x⃗) = diag(∇g4(x⃗)) − [∇g4(x⃗)][∇g4(x⃗)]⊤ (128)

where diag(·) : Rn → Rn×n forms a diagonal matrix whose diagonal entries are the entries of the
input vector, i.e.,

diag(v⃗) =


v1

. . .
vn

 . (129)

v. g5(x⃗) = g4(Ax⃗ − b⃗) = log(
∑n

i=1 ea⃗⊤
i x⃗−bi). (Use the chain rule and the Jacobians computed in part

(a); you can use the gradient ∇g4 and Hessian ∇2g4 in your answer without having to rewrite it.)
Solution: As prompted, we use the chain rule to compute the gradient:

∇g5(x⃗) = (Dg5(x⃗))⊤ (130)

= ([Dg4(Ax⃗ − b⃗)][D(Ax⃗ − b⃗)])⊤ (131)

= ([Dg4(Ax⃗ − b⃗)]A)⊤ (132)

= A⊤[Dg4(Ax⃗ − b⃗)]⊤ (133)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

= A⊤[∇g4(Ax⃗ − b⃗)]. (134)

To compute the Hessian, we write

∇2g5(x⃗) = D(∇g5)(x⃗) (135)

= D(A⊤[∇g4(Ax⃗ − b⃗)]). (136)

To evaluate this product, we look component-by-component and use a multivariate chain rule:

[D(A⊤[∇g4(Ax⃗ − b⃗)])]jk = ∂

∂xk
(A⊤[∇g4(Ax⃗ − b⃗)])j (137)

= ∂

∂xk

n∑
i=1

aij [∇g4(Ax⃗ − b⃗)]i (138)

=
n∑

i=1
aij

∂

∂xk
[∇g4(Ax⃗ − b⃗)]i (139)

=
n∑

i=1
aij

n∑
ℓ=1

∂[∇g4(Ax⃗ − b⃗)]i
∂(Ax⃗ − b⃗)ℓ

∂(Ax⃗ − b⃗)ℓ

∂xk
(140)

=
n∑

i=1
aij

n∑
ℓ=1

∂2g4(Ax⃗ − b⃗)
∂(Ax⃗ − b⃗)i ∂(Ax⃗ − b⃗)ℓ

∂(Ax⃗ − b⃗)ℓ

∂xk
(141)

=
n∑

i=1
aij

n∑
ℓ=1

[∇2g4(Ax⃗ − b⃗)]iℓ[D(Ax⃗ − b⃗)]ℓk (142)

=
n∑

i=1
aij

n∑
ℓ=1

[∇2g4(Ax⃗ − b⃗)]iℓ[A]ℓk (143)

=
n∑

i=1
aij([∇2g4(Ax⃗ − b⃗)]A)ik (144)

=
n∑

i=1
[A⊤]ji([∇2g4(Ax⃗ − b⃗)]A)ik (145)

= (A⊤[∇2g4(Ax⃗ − b⃗)]A)jk. (146)

Thus,
∇2g5(x⃗) = A⊤[∇2g4(Ax⃗ − b⃗)]A. (147)

vi. g6(x⃗) = e∥x⃗∥2
2 = eg2(x⃗). (Use the chain rule and the Jacobians computed in part (a).)

Solution: We use the multivariable chain rule, obtaining

∇g6(x⃗) = (Dg6(x⃗))⊤ (148)

= ([D exp(g2(x⃗))][Dg2(x⃗)])⊤ (149)

= [Dg2(x⃗)]⊤[D exp(g2(x⃗))]⊤ (150)

= [∇g2(x⃗)][eg2(x⃗)]⊤ (151)

= [2x⃗][eg2(x⃗)] (152)

= 2e∥x⃗∥2
2 x⃗, (153)

since the transpose of a scalar is a scalar. For the Hessian, we obtain

∇2g6(x⃗) = D(∇g6)(x⃗) (154)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 13

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

= D(2e∥x⃗∥2
2 x⃗). (155)

Notice that the function being differentiated is of the form f(x⃗)x⃗, for f(x⃗) = 2e∥x⃗∥2
2 . Thus we obtain

that

∇2g6(x⃗) = D(f(x⃗)x⃗) (156)

= x⃗[∇f(x⃗)]⊤ + f(x⃗)I. (157)

It just remains to compute ∇f(x⃗), which we compute componentwise using the scalar chain rule, and
obtain

[∇f(x⃗)]j = ∂f

∂xj
(x⃗) (158)

= ∂

∂xj
(2e∥x⃗∥2

2) (159)

= 2e∥x⃗∥2
2

∂∥x⃗∥2
2

∂xj
(160)

= 2e∥x⃗∥2
2 [∇∥x⃗∥2

2]j (161)

= 2e∥x⃗∥2
2 [2x⃗]j (162)

= 4xje∥x⃗∥2
2 . (163)

Thus we have
∇f(x⃗) = 4e∥x⃗∥2

2 x⃗. (164)

This gives

∇2g6(x⃗) = 4e∥x⃗∥2
2 x⃗x⃗⊤ + 2e∥x⃗∥2

2I (165)

= 2e∥x⃗∥2
2(I + 2x⃗x⃗⊤). (166)

vii. g7(x⃗) = e∥Ax⃗−b⃗∥2
2 = g6(Ax⃗ − b⃗). (Use the chain rule and the Jacobians computed in part (a); you

can use the gradient ∇g6 and Hessian ∇2g6 in your answer without having to rewrite it.)
Solution: Notice that in part 4.((b))v, we did not use any specific functional properties of g4, ∇g4, or
∇2g5 to determine ∇g5 and ∇2g5. Using the exact same analysis, we can conclude that

∇g7 = A⊤[∇g6(Ax⃗ − b⃗)], and ∇2g7 = A⊤[∇2g6(Ax⃗ − b⃗)]A. (167)

Consider the case now where all vectors and matrices above are scalar; do your answers above make sense?
(No need to answer this in your submission.)

(c) Plot/hand-draw the level sets of the following functions:

i. g(x1, x2) = x2
1

4 + x2
2

9
ii. g(x1, x2) = x1x2

Also point out the gradient directions in the level-set diagram. Additionally, compute the first and second
order Taylor series approximation around the point (1, 1) for each function and comment on how accurately
they approximate the true function.
Solution: Figures 1 and 2 contain the level sets and gradient directions for the given functions.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 14

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

i. We first compute the first and second order partial derivatives of g as follows:

∂g

∂x1
(x1, x2) = x1

2 ,
∂g

∂x2
(x1, x2) = 2x2

9 , (168)

∂2g

∂x2
1

(x1, x2) = 1
2 ,

∂2g

∂x2x1
(x1, x2) = 0, (169)

∂2g

∂x2
2

(x1, x2) = 2
9 ,

∂2g

∂x1x2
(x1, x2) = 0. (170)

The gradient of g is then given by,

∇g(x1, x2) =
[

∂g
∂x1

(1, 1)
∂g

∂x2
(1, 1)

]
, (171)

and the Hessian matrix is given by,

H(x1, x2) =
[

∂2g
∂x2

1
(x1, x2) ∂2g

∂x1x2
(x1, x2)

∂2g
∂x2x1

(x1, x2) ∂2g
∂x2

2
(x1, x2)

]
. (172)

The first order Taylor series approximation around (1, 1) can be computed as:

g(x1, x2) ≈ g(1, 1) + (∇g(1, 1))⊤

[
x1 − 1
x2 − 1

]
(173)

= 13
36 + x1

2 − 1
2 + 2x2

9 − 2
9 = x1

2 + 2x2

9 − 13
36 . (174)

The second order Taylor series approximation around (1, 1) can be computed as:

g(x1, x2) ≈ g(1, 1) + (∇g(1, 1))⊤

[
x1 − 1
x2 − 1

]
+ 1

2

[
x1 − 1 x2 − 1

]
H(1, 1)

[
x1 − 1
x2 − 1

]
(175)

= x1

2 + 2x2

9 − 13
36 + 1

2

(
1
2(x1 − 1)2 + 2

9(x2 − 1)2
)

(176)

= (x1 − 1)2

4 + (x2 − 1)2

9 + x1

2 + 2x2

9 − 13
36 . (177)

= x2
1

4 + x2
2

9 (178)

Figure 1: Level sets and gradient directions for the function g(x1, x2) = x2
1

4 + x2
2

9 .

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 15

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

Figure 2: Level sets and gradient directions for the function g(x1, x2) = x1x2.

The original function at (1.1,1.1) takes on the value 0.437. The first order approximation returns, eval-
uated at (1.1,1.1): 1.1

2 + 2.2
9 − 13

36 = 0.433. Additionally, observe that the second order approximation
simplifies to return the original function!

ii. We follow the same steps as in the previous part of the problem. The partial derivatives for this g are
given by:

∂g

∂x1
(x1, x2) = x2,

∂g

∂x2
(x1, x2) = x1, (179)

∂2g

∂x2
1

(x1, x2) = 0,
∂2g

∂x2x1
(x1, x2) = 1, (180)

∂2g

∂x2
2

(x1, x2) = 0,
∂2g

∂x1x2
(x1, x2) = 1. (181)

The first order Taylor series approximation around (1, 1) can be computed as:

g(x1, x2) ≈ g(1, 1) + (∇g(1, 1))⊤

[
x1 − 1
x2 − 1

]
(182)

= 1 + x1 − 1 + x2 − 1 = x1 + x2 − 1. (183)

The second order Taylor series approximation around (1, 1) can be computed as:

g(x1, x2) ≈ g(1, 1) + (∇g(1, 1))⊤

[
x1 − 1
x2 − 1

]
+ 1

2

[
x1 − 1 x2 − 1

]
H(1, 1)

[
x1 − 1
x2 − 1

]
(184)

= x1 + x2 − 1 + 1
2 (2(x1 − 1)(x2 − 1)) (185)

= (x1 − 1)(x2 − 1) + x1 + x2 − 1. (186)

= x1x2 (187)

The original function evaluated at (1.1,1.1) is 1.21. The first order approximation around (1.1, 1.1) is
1.2, but the second order approximation again exactly represents the function!

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 16

EECS 127/227AT Homework 5 2024-02-17 12:17:51-08:00

5. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 17

