
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 6

This homework is due at 11 PM on February 23, 2024.
Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers
(any handwritten answers should be scanned).

1. Condition Number

In lecture, we examined the sensitivity of solutions to linear system A~x = ~y (for nonsingular/invertible square
matrix A) to perturbations in our measurements ~y. Specifically, we showed that if we model measurement noise
∆~y as a linear perturbation on ~y, resulting in a linear perturbation ∆~x on ~x — i.e., A(~x + ∆~x) = ~y + ∆~y — we
can bound the magnitude of the solution perturbations ∆~x as

‖∆~x‖2
‖~x‖2

≤ κ(A)
‖∆~y‖2
‖~y‖2

, (1)

where κ(A) = σmax{A}
σmin{A} = ‖A‖2

∥∥A−1
∥∥

2 is the condition number of A, or the ratio of A’s maximum and
minimum singular values. In this problem, we will establish a similar bound for perturbations on A.

(a) Consider the linear system A~x = ~y above, where A ∈ Rn×n is invertible (i.e., square and nonsingular).
Let ∆A ∈ Rn×n denote a linear perturbation on matrix A generating a corresponding linear perturbation
∆~x in solution ~x, i.e.,

(A + ∆A)(~x + ∆~x) = ~y. (2)

Show that
‖∆~x‖2

‖~x + ∆~x‖2
≤ κ(A)

‖∆A‖2
‖A‖2

. (3)

(b) Note that Equations (1) and (3) above bound two slightly different quantities:
‖∆~x‖2
‖~x‖2

and
‖∆~x‖2

‖~x + ∆~x‖2
,

respectively. In general, we wish to establish these bounds because we want to characterize the size of ∆~x

under different sizes of perturbation. Which of these two bounds better serves this purpose? Consider the
following two cases. (i) ∆~x � ~x (ii) ~x � ∆~x and answer whether Equation (1) or Equation (3) is better.
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2. Ridge Regression for Bounded Output Perturbation

We will first solve the ridge regression problem in the case where our output measurements ~y are perturbed and
we have some bounds on this perturbation, as well as some specific knowledge about data matrix A.

Let square matrix A ∈ Rn×n have the singular value decomposition A = UΣV >, and let its smallest singular
value be σmin{A} > 0.

(a) Is A invertible? If so, write the singular value decomposition of A−1.

(b) Consider the linear equation A~x = ~yp, where ~yp ∈ Rn is a perturbed measurement satisfying

‖~yp − ~y‖2 ≤ r (4)

for some vector ~y ∈ Rn and r > 0. Let ~x?(~y) denote the solution of A~x = ~y.

Show that
max

~yp:‖~yp−~y‖2≤r
‖~x?(~yp) − ~x?(~y)‖2 = r

σmin{A}
(5)

(c) What happens if the smallest singular value of A is very close to zero? Why is this problematic for finding
our solution vector ~x??

(d) Now assume that we find optimal value ~x? via ridge regression, i.e., we compute

~x?
λ(~yp) = argmin

~x

{
‖A~x − ~yp‖2

2 + λ ‖~x‖2
2

}
(6)

for some chosen value λ ≥ 0. Compute ~x?
λ(~yp), our optimal solution vector (now parameterized by λ), by

solving this optimization problem. You may use the solution from class for this part.

(e) Show that for all λ > 0,
max

~yp:‖~yp−~y‖2≤r
‖~x?

λ(~yp) − ~x?
λ(~y)‖2 ≤ r

2
√

λ
. (7)

How does the value of λ affect the sensitivity of your solution ~x?
λ(~y) to the perturbation level in ~y? HINT:

For every λ > 0, we have
max
σ>0

σ

σ2 + λ
= 1

2
√

λ
. (8)

You need not show this; this optimization can be solved by setting the derivative of the objective function to
0 and solving for σ.
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3. Linear Regression with Weights

In this problem, we discuss multiple interpretations of weighted linear regression.

Let A ∈ Rm×n be a data matrix whose data points are the m rows ~a>
1 , . . . ,~a>

m ∈ Rn. Suppose m ≥ n and A

has full column rank. Let ~y ∈ Rm be a vector of outputs, each corresponding to a data point. Let ~w ∈ Rm
++ be

a vector of positive real numbers, also called weights, each corresponding to a data point—output pair. We are
interested in the following least-squares type optimization problem:

min
~x∈Rn

m∑
i=1

wi(~a>
i ~x − yi)2. (9)

In general, assigning a high weight wi means that we want our learned linear predictor ~a>
i ~x to achieve a close

value to yi; that is, we believe this data point is significant or important to get right.

(a) Show that the problem in Equation (9) is equivalent to the problem:

min
~x∈Rn

∥∥∥W 1/2(A~x − ~y)
∥∥∥2

2
(10)

where W
.= diag(~w) ∈ Rm×m is a diagonal matrix whose diagonal entries are the entries of ~w.

(b) Using Equation (10), compute the gradient (with respect to ~x) of the objective function

f(~x) .=
∥∥∥W 1/2(A~x − ~y)

∥∥∥2

2
. (11)

(c) Show that the optimal solution to Equation (10) is given by

~x?
WLR

.= (A>WA)−1A>W~y. (12)

HINT: There are multiple ways to do this problem; one uses the gradient that you just computed, and another
finds the least squares solution of a particular linear system.

HINT: If using the gradient method, you may assume that f is minimized at any ~x? such that ∇~xf(~x?) = ~0;
this is because f is convex, as we will see a little later in the course.

(d) Now we will look at this problem from a probabilistic interpretation. Suppose our output value ~y is noisy,
and in particular there is some ~x0 such that for every i we have yi = ~a>

i ~x0 + ui, where ui is a random
variable. Here we assume the ui are independent but not identically distributed. In particular, we assume
that for each i we have that ui is distributed according to a Gaussian N (0, σ2

i ) where σi > 0 is a known
noise parameter for each data point i.

To recover ~x0 given data A and ~y, as well as the σ2
i , we want to compute the maximum likelihood estimator

(MLE). Show that the maximum likelihood problem

argmax
~x∈Rn

p(~y | A, ~x) (13)

is equivalent to the weighted linear regression problem:

argmin
~x∈Rn

m∑
i=1

wi(~a>
i ~x − yi)2. (14)

for some choice of ~w. What choice of ~w makes them equivalent?

Note: Refer to Sec.4.5 of the course reader for a discussion on MLE.
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(e) In addition to assigning weights to data points to place higher importance on getting those points right,
sometimes we want to make sure that our learned ~x is close to some value ~z ∈ Rn. This could be true, for
example, if we had prior information that said ~x is close to ~z.

In particular, we want to make sure that the quantity

n∑
i=1

si(xi − zi)2 (15)

is small, where ~s ∈ Rn
++ is a vector of positiveweights. We may add this term to the weighted least squares

objective function, with a regularization parameter λ ≥ 0, to create a modified objective function

g(~x) .=
∥∥∥W 1/2(A~x − ~y)

∥∥∥2

2
+ λ

∥∥∥S1/2(~x − ~z)
∥∥∥2

2
(16)

where S
.= diag(~s) ∈ Rn×n is a diagonal matrix whose entries are the entries of ~s. This formulation is

called Tikhonov regression.

Compute the gradient (with respect to ~x) of g, and show that the optimal solution is

~x?
TR

.= (A>WA + λS)−1(A>W~y + λS~z). (17)

HINT: You may assume that g is minimized at any ~x? such that ∇~xg(~x?) = ~0; this is because g is convex,
as we will see a little later in the course.
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4. Quadratics and Least Squares

In this question, we will see that every least squares problem can be considered as minimization of a quadratic
cost function; whereas not every quadratic minimization problem corresponds to a least-squares problem. To
begin with, consider the quadratic function, f : R2 → R given by:

f(~w) = ~w>A~w − 2~b> ~w + c (18)

where A ∈ S2
+ (set of symmetric positive semidefinite matrices in R2×2),~b ∈ R2 and c ∈ R.

(a) Assume c = 0, and assume that setting ∇f(~w) = 0 allows us to find the unique minimizer. Give a concrete

example of a matrix A � 0 and a vector~b such that the point ~w? =
[
−1 1

]>
is the unique minimizer of

the quadratic function f(~w).

(b) Assume c = 0. Give a concrete example of a matrix A � 0, and a vector~b such that the quadratic function
f(~w) has infinitely many minimizers and all of them lie on the line w1 + w2 = 0.
HINT: Take the gradient of the expression and set it to zero. What needs to be true for there to be infinitely
many solutions to the equation?

(c) Assume c = 0. Let ~w =
[
1 0

]>
. Give a concrete example of a non-zero matrix A � 0 and a vector ~b

such that the quadratic function f(α~w) tends to −∞ as α → ∞. HINT: Use the eigenvalue decomposition
to write A = σ1~u1~u>

1 + σ2~u2~u>
2 and express ~w in the basis formed by ~u1, ~u2.

(d) Say that we have the data set {(~xi, yi)}i=1,...,n of data points ~xi ∈ Rd and values yi ∈ R. Define X =[
~x1 . . . ~xn

]>
and ~y =

[
y1 . . . yn

]>
. In terms of X and ~y, find a matrix A, a vector ~b ∈ Rd and

a scalar c, so that we can express the sum of the square losses
n∑

i=1
(~w>~xi − yi)2 as the quadratic function

f(~w) = ~w>A~w − 2~b> ~w + c.

(e) Here are three statements with regards to the minimization of a quadratic loss function:

i. It can have a unique minimizer.

ii. It can have infinitely many minimizers.

iii. It can be unbounded from below, i.e. there is some direction, ~w so that f(α~w) goes to −∞ as α → ∞.

All three statements apply to general minimization of a quadratic cost function. Parts (a), (b) and (c) give
concrete examples of quadratic cost functions where (i), (ii) and (iii) apply respectively. However, notice
that statement (iii) cannot apply to the least squares problem as the objective is always positive. The least-
squares problem can have infinitely many minimizers though. How? Consider the gradient of the least
squares problem in part (d) at an optimal solution ~w?:

∇f(~w?) = 2X>X ~w? − 2~b = 0. (19)

Therefore, the least squares problem only has multiple solutions if X>X is not full rank. This means that
rank

(
X>X

)
= rank(X) < d. Finally, the rank of X is less than d when the data points {~xi}n

i=1 do not
span Rd. This can happen when the number of data points n is less than d or when {~fi}d

i=1 are linearly
dependent where ~fi are the columns of X , i.e., the features.

We will see soon that these cases correspond to the convexity of the function: if the function is strictly
convex, then it has a unique minimizer; and if it is just convex, then it can have multiple minimizers; and in
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both cases, it can have no minimizers. We will see soon how to prove that the quadratic objective functions
we discuss in this problem are convex, strictly convex, or even non-convex.

Indicate below that you have read and understood the discussion above.
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5. Neural Networks and Backpropagation

Neural networks are parametric functions that have been widely used to fit complex patterns in vision and natural
languages. Given some training data of the form (~xi, yi), a neural networkN is trained tominimize a loss function
on the data. This is often done using gradient descent, an optimization method we will cover later in this class.
Gradient descent requires us to compute the gradients of the loss function with respect to the parameters of the
neural network. In practice, computational frameworks for neural networks compute the gradients automatically
and efficiently via back-propagation, which uses the chain rule to recursively compute the gradients of the loss
function. In this problem, we study a toy neural network trained on a single data point (~x, y).

In particular, consider the following simplified three-layer neural network N , representing a map from Rd to R
whose parameters are (~w1, w2, w3) ∈ Rd × R × R:

p1 = ~w>
1 ~x (20)

h1 = σ(p1) (21)

p2 = w2h1 (22)

h2 = σ(p2) (23)

z = w3h2, (24)

where σ : R → R is a nonlinear function (also called the “activation function”), whose derivative is denoted by
σ′ : R → R.

We want the output of the network z = N (~x) to match the true label y. A natural choice of the loss function
encouraging this behavior is the squared loss:

L(y, z) .= 1
2(y − z)2. (25)

In the parts that follow, we will compute the derivative of L with respect to the parameters ~w1, w2, w3.

(a) Compute the following gradients and partial derivatives sequentially from left-to-right:

∂L

∂z
,

∂L

∂w3
,

∂L

∂h2
,

∂L

∂p2
,

∂L

∂w2
,

∂L

∂h1
,

∂L

∂p1
, ∇~w1L, ∇~xL. (26)

Here ∇~xL is the gradient whose entries are the derivatives of L with respect to the entries of ~x, etc. We
compute the first 4 derivatives for you.

∂L

∂z
= z − y,

∂L

∂w3
= ∂L

∂z
h2,

∂L

∂h2
= ∂L

∂z
w3,

∂L

∂p2
= ∂L

∂h2
σ′(p2) (27)

Note how
∂L

∂w3
can be calculated using

∂L

∂z
and

∂L

∂p2
can be calculated using

∂L

∂h2
. In numerical computa-

tion, the result of
∂L

∂z
and

∂L

∂h2
can thus be reused. This technique of saving computations for calculating

the derivatives of a neural network is called back-propagation.

Use the chain rule to calculate the 5 remaining derivatives
∂L

∂w2
,

∂L

∂h1
,

∂L

∂p1
,∇~w1L, and ∇~xL.

(b) (OPTIONAL) Now suppose that Equation (24) is written as

z′ = w3h2 + h1. (28)

That is, we define a new neural network N ′ with parameters (~w1, w2, w3) ∈ Rd × R × R as follows.

p1 = ~w>
1 ~x (29)
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h1 = σ(p1) (30)

p2 = w2h1 (31)

h2 = σ(p2) (32)

z′ = w3h2 + h1. (33)

This introduces a change in the network architecture, called the skip connection.

Again, compute the following gradients and partial derivatives with respect to the loss function L(y, z′) =
1
2 (y − z′)2:

∂L

∂z′ ,
∂L

∂w3
,

∂L

∂h2
,

∂L

∂p2
,

∂L

∂w2
,

∂L

∂h1
,

∂L

∂p1
, ∇~w1L, ∇~xL. (34)

We compute the first 4 derivatives for you.

∂L

∂z′ = z′ − y,
∂L

∂w3
= ∂L

∂z′ h2,
∂L

∂h2
= ∂L

∂z′ w3,
∂L

∂p2
= ∂L

∂h2
σ′(p2). (35)

Use the chain rule to calculate the 5 remaining derivatives
∂L

∂w2
,

∂L

∂h1
,

∂L

∂p1
,∇~w1L, and ∇~xL.

(c) (OPTIONAL) In optimizing a neural network using gradient descent, we need the gradient of the loss

function with respect to the parameters of the network. Please express
∂L

∂w3
,

∂L

∂w2
, and ∇~w1L for N and

N ′ respectively with no dependence on partial derivatives of other variables. We compute
∂L

∂w3
for you,

as follows.

• For N , we have
∂L

∂w3
= ∂L

∂z
h2 = (z − y)h2.

• For N ′, we have
∂L

∂w3
= ∂L

∂z′ h2 = (z′ − y)h2.

Express the remaining derivatives
∂L

∂w2
and ∇~w1L within N and N ′.

(d) (OPTIONAL) Many activation functions σ have the property that σ′ ≤ 1. For example, the sigmoid
function σ(p) = 1

1+e−p is sometimes used as an activation function. Its derivative, σ′(p) = e−p

(1+e−p)2

has the range (0, 1/4]. That is, σ′ < 1. Consider the case when σ′ is much smaller than 1, such that

σ′(p)σ′(q) ≈ 0 for any p, q, but σ′(p) 6≈ 0 for any p. Consider the derivatives
∂L

∂w3
,

∂L

∂w2
, and ∇~w1L

within the neural network N ; with the above approximations, which of them will approximately be zero?
Also answer this question for the neural network N ′.

NOTE: Some of the above gradients will indeed be approximately zero, and this is called the vanishing
gradient problem in deep learning.
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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