
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 7

Self grades are due at 11 PM on March 8, 2024.

1. Midsemester Survey

Please complete this mid-semester survey at the following link: link. You will get a code at the end of the survey;
write it in as the solution for this problem.

1

https://forms.gle/8xZ2eDEfDjAX6FQt8


EECS 127/227AT Homework 7 2024-02-23 16:52:47-08:00

2. Convex or Concave

Determine whether the following functions are convex, strictly convex, concave, strictly concave, both or neither.

(a) f(x) = ex − 1 on R.

Solution: f(x) = ex − 1 on R.
This is strictly convex since d2f

dx2 (x) = ex > 0 for all x ∈ R.

(b) f(x1, x2) = x1x2 on R2
++ (i.e. when x1 > 0 and x2 > 0).

Solution: f(x1, x2) = x1x2 on R2
++.

This is neither convex nor concave. The Hessian of f is

∇2f(x) =
[

0 1
1 0

]
(1)

which has eigenvalues ±1 which implies the Hessian is neither positive semidefinite nor negative semidef-
inite.

(c) The log-likelihood of a set of points {x1, . . . , xn} that are normally distributed with mean µ and finite
variance σ > 0 is given by:

f(µ, σ) = n log
(

1√
2πσ

)
− 1

2σ2

n∑
i=1

(xi − µ)2 (2)

i. Show that if we view the log likelihood for fixed σ as a function of the mean, i.e

g(µ) = n log
(

1√
2πσ

)
− 1

2σ2

n∑
i=1

(xi − µ)2 (3)

then g is strictly concave (equivalently, we say f is strictly concave in µ).

ii. (OPTIONAL) Show that if we view the log likelihood for fixed µ as a function of the inverse of the
variance, i.e

h(z) = n log
( √

z√
2π

)
− z

2

n∑
i=1

(xi − µ)2 (4)

then h is strictly concave (equivalently, we say f is strictly concave in z = 1
σ2 ). Note that we have

used the dummy variable z to denote 1
σ2 .

iii. (OPTIONAL) Show that f is not jointly concave in µ, 1
σ2 . HINT: We say a function w(x, y) with

x ∈ Rm and y ∈ Rn is jointly convex if

w (λ(x1, y1) + (1 − λ)(x2, y2)) ≤ λw((x1, y1)) + (1 − λ)w((x2, y2)). (5)

This is the same as letting z = (x, y) and saying f is convex in z. We can define joint concavity in a
similar fashion by reversing the inequalities.

Solution: For g(µ) we have,

∇g(µ) =
n∑

i=1

xi − µ

σ2 (6)

∇2g(µ) = − n

σ2 < 0. (7)
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Since σ is finite, g is strictly concave (equivalently f is strictly concave in µ).
For h(z) we have,

∇h(z) = n

2z −
n∑

i=1

(xi − µ)2

2 (8)

∇2h(z) = − n

2z2 < 0. (9)

Since z2 is finite (σ > 0), h is strictly concave (equivalently f is strictly concave in σ2). For f(µ, 1
σ2 ), we

find the second order partial derivatives and stack them in the Hessian. We have,

∇2f(µ, 1
σ2 ) =

 − n
σ2

n∑
i=1

(xi − µ)
n∑

i=1
(xi − µ) − nσ4

2

 . (10)

The determinant of the Hessian is given by,

det
(
∇2f

)
= n2σ2

2 − (
n∑

i=1
(xi − µ))2. (11)

and the trace of the Hessian is given by,

tr
(
∇2f

)
= − n

σ2 − nσ4

2 < 0 (12)

Note that the trace is the sum of the eigenvalues, and the determinant is the product of the eigenvalues.
Since the trace is always negative, if the determinant is negative it must imply that one eigenvalue is
positive and another is negative; that is, we have f is neither convex nor concave. It is easy to see that
det

(
∇2f

)
can sometimes be negative – for example, if we choose σ2 to be close to zero and µ away from

xi, the second negative term dominates and make det
(
∇2f

)
≤ 0. Aside: Note however, in the maximum

likelihood estimates, the Hessian is negative semi-definite implying that locally the function is concave.
More concretely, at

µ̂ = 1
n

n∑
i=1

, σ̂2 = 1
n

n∑
i=1

(xi − µ̂)2 (13)

we have ∇2f(µ̂, 1/σ̂2) ⪯ 0

(d) f(x) = log(1 + ex). Note that this implies that g(x) = −f(x) = log
(

1
1+ex

)
is concave. Compare this to

h(x) = 1
1+ex , is h(x) convex or concave?

Solution: We will do this by verifying the second order sufficient conditions for convexity. We have the
derivatives of f can be computed using the chain rule as follows:

f ′(x) = ∂f

∂x
(x) = ex

1 + ex

f ′′(x) = ∂2f

∂x2 (x) = ex

1 + ex
+ −ex

(1 + ex)2 ex = ex

(1 + ex)2 > 0.

Since we have f ′′(x) > 0 for all x, we conclude that the function f is strictly convex.
Now consider h(x) = 1

1+ex . We use the second order condition for convexity, and calculate

∇h(x) = −ex

(1 + ex)2 ; ∇2h(x) = (ex − 1)ex

(ex + 1)3 .

The second derivative is positive for x > 0, and negative for x < 0, hence the function is neither convex
nor concave.
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3. Further characterizations of convexity

Show that σ1 : Rm×n → R+, the function that maps a matrix to its largest singular value, is a convex function,
with domain Rm×n.

HINT: You may express σ1(A) using the ℓ2 operator norm of A:

σ1(A) = max
x⃗∈Rn:∥x⃗∥2=1

∥Ax⃗∥2 ,

and use the fact that the supremum of a family of convex functions is convex. This question proves that this norm
is convex, so you may not use the fact that norms are convex.

Solution: We have

σ1(A) = max
x⃗∈Rn:∥x⃗∥2=1

∥Ax⃗∥2 ,

which is the characterization of the largest singular value of a matrix as its induced ℓ2 norm. Note that this expresses
the function

σ1 : Rm×n → R+,

as the supremum of a family of function, one for each x ∈ Rn with ∥x⃗∥2 = 1, which we may temporarily call ψx for
convenience, given by

ψx(A) := ∥Ax⃗∥2 ∀A ∈ Rm×n.

If we could prove that each ψx : Rm×n → R+ is convex then we could be done, because the supremum of a family of
convex functions is convex.

To show that ψx(·) is convex, consider two matrices A,B ∈ Rm×n and their linear combination θA+ (1 − θ)B,
where θ ∈ [0, 1].

ψx(θA+ (1 − θ)B) = ∥(θA+ (1 − θ)B)x⃗∥2 = ∥θAx⃗+ (1 − θ)Bx⃗∥2

≤ θ ∥Ax⃗∥2 + (1 − θ) ∥Bx⃗∥2 = θψx(A) + (1 − θ)ψx(B),

where the inequality comes from the triangle inequality on the ℓ2 norm. Hence, ψx(·) is convex.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4



EECS 127/227AT Homework 7 2024-02-23 16:52:47-08:00

4. Convex and strictly convex functions

(a) Recall that a function f : Rn → R is said to be strictly convex if it satisfies Jensen’s inequality with strict
inequality, i.e., ∀x⃗ ̸= y⃗ ∈ Rn and ∀t ∈ (0, 1), we have

f(tx⃗+ (1 − t)y⃗) < tf(x⃗) + (1 − t)f(y⃗)

Show that for a strictly convex function f : Rn → R, the problem

min
x⃗∈Rn

f(x⃗) (14)

has at most one solution.

HINT: Try to argue by contradiction assuming that there are two solutions x⃗1, x⃗2 which achieve the
minimum value. Argue that using these two points you can find another point in Rn with strictly smaller
function value.

Solution: Assume that f∗ = min
x⃗∈Rn

f(x⃗) has at least two different optimal solutions x⃗1, x⃗2 ∈ Rn. Hence

f∗ = f(x⃗1) = f(x⃗2). Consider z⃗ = (x⃗1 + x⃗2)/2.

f(z⃗) = f((x⃗1 + x⃗2)/2)

< (f(x⃗1) + f(x⃗2))/2

= f∗

where the inequality follows from strict convexity. Hence we’ve shown that z⃗ has functional value strictly
smaller than f∗ and hence f∗ was not the optimal value giving us a contradiction.

(b) Prove that for all convex optimization problems minx⃗∈X f(x⃗), where f is a convex function and X is a
convex set, all local minima are global minima. You may not assume that f is differentiable.

HINT: Start with assuming x⃗⋆ is a local minimum that is not global, and ⃗̃x is a global minimum. Use the
definition of the convexity of a function to prove by contradiction.

Solution: To arrive at a contradiction, suppose x⃗⋆ is a local minimum that is not global. Let ⃗̃x be a global
minimum. Thus we have f(⃗̃x) < f(x⃗⋆). Then by convexity λx⃗⋆ + (1 − λ)⃗̃x ∈ X and hence

f(λx⃗⋆ + (1 − λ)⃗̃x) ≤ λf(x⃗⋆) + (1 − λ)f(⃗̃x)

< λf(x⃗⋆) + (1 − λ)f(x⃗⋆)

= f(x⃗⋆)

Thus, for all λ ∈ [0, 1), we have f(λx⃗⋆ +(1−λ)⃗̃x) < f(x⃗⋆). Then we can make λx⃗⋆ +(1−λ)⃗̃x arbitrarily
close to x⃗⋆, contradicting that x⃗⋆ is a local minimum.
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5. Convexity of Rank 1 Matrices

In this problem, we explore the effect of rank constraints on the convexity of matrix sets.

First, consider the set of all 2 × 2 matrices with diagonal elements (1, 2), which we can write explicitly as

S =
{[

1 x

y 2

] ∣∣∣∣∣ x, y ∈ R

}
. (15)

(a) Is set S convex? If so, provide a proof, and if not, provide a counterexample.

Solution: Set S is indeed convex. In general, a set S is convex if for all elements s1, s2 ∈ S, and λ ∈ [0, 1],

λs1 + (1 − λ)s2 ∈ S. (16)

Considering s1 =
[

1 x1

y1 2

]
, s2 =

[
1 x2

y2 2

]
∈ S, we have

λs1 + (1 − λ)s2 = λ

[
1 x1

y1 2

]
+ (1 − λ)

[
1 x2

y2 2

]
(17)

=
[

1λ+ 1(1 − λ) λx1 + (1 − λ)x2

λy1 + (1 − λ)y2 2λ+ 2(1 − λ)

]
(18)

=
[

1 λx1 + (1 − λ)x2

λy1 + (1 − λ)y2 2

]
(19)

∈ S. (20)

(b) Suppose we now wish to define S1 ⊂ S, the set of all rank-1 matrices in S. Write out conditions on x and
y (i.e. equation constraints that x and y must satisfy) to define S1 explicitly.

Solution: If a matrix s =
[

1 x

y 2

]
is an element of S1, then its columns must be linearly dependent, i.e.,

[
x

2

]
= α

[
1
y

]
(21)

for some α ∈ R. Computing each row equality, we have x = α and 2 = αy ⇒ y = 2
α , and thus

S1 =
{[

1 x

y 2

]∣∣∣∣∣x = α, y = 2
α
, α ∈ R

}
(22)

=
{[

1 x

y 2

]∣∣∣∣∣x, y ∈ R, y = 2
x

}
(23)

or alternatively

S1 =
{[

1 α
2
α 2

]∣∣∣∣∣α ∈ R

}
. (24)

Note that this is equivalent to

S1 =
{[

1 1
β

2β 2

]∣∣∣∣∣β ∈ R

}
, (25)

which we can see by defining β .= 1
α .
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(c) Is set S1 convex? If so, provide a proof, and if not, provide a counterexample.

Solution: Set S1 is not convex.

Let s1, s2 ∈ S1 and s1 =
[

1 x
2
x 2

]
, s2 =

[
1 y
2
y 2

]
. Let 0 ≤ λ ≤ 1, s3(λ) = λs1 + (1 − λ)s2 =[

1 λx+ (1 − λ)y
2λ
x + 2(1−λ)

y 2

]
. Since ∃λ.0 ≤ λ ≤ 1 such that (λx+ (1 − λ)y)( 2λ

x + 2(1−λ)
y ) ̸= 2, S1

is not convex.

For one possible counterexample, consider s1 =
[

1 1
2 2

]
, s2 =

[
1 −2

−1 2

]
∈ S1, λ = 1

2 . Then

λs1 + (1 − λ)s2 = 1
2

[
1 1
2 2

]
+

(
1 − 1

2

) [
1 −2

−1 2

]
(26)

=
[

1 − 1
2

1
2 2

]
(27)

/∈ S1. (28)

(d) In this class, we will sometimes pose optimization problems in which we optimize over sets of matrices.
Since low-dimensional models are often easier to interpret, it would be nice to impose rank constraints on
these solution matrices. Suppose we wish to solve the optimization problem

min
A∈S1

∥A∥2
F (29)

which is equivalent to

min
A∈S

∥A∥2
F (30)

s.t. rank(A) = 1. (31)

Is this optimization problem convex?

Solution: While optimizing ∥A∥2
F over the set of all A ∈ R2×2 is convex, because S1 is not convex, this

optimization problem is not convex because the domain of the function is not convex.
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6. Convexity

(a) Show the conservation of convexity through affine transformation, i.e., prove that if S ⊆ Rn is convex,
then the image of S under an affine function f ,

f(S) = {f(x⃗) | x⃗ ∈ S}, (32)

is convex.

Solution: Let y⃗1, y⃗2 ∈ f(S). This implies there exist x⃗1, x⃗2 ∈ S such that y⃗1 = Ax⃗1 + b⃗ and y⃗2 = Ax⃗2 + b⃗.
We want to show that λy⃗1 + (1 − λ)y⃗2 ∈ f(S) for 0 ≤ λ ≤ 1.
Since S is convex we have λx⃗1 + (1 − λ)x⃗2 ∈ S. Further A(λx⃗1 + (1 − λ)x⃗2) + b⃗ = λy⃗1 + (1 − λ)y⃗2.
This shows that λy⃗1 + (1 − λ)y⃗2 ∈ f(S).

(b) Show that a function f : Rn → R is convex if and only if its epigraph, defined as epi(f) = {(x⃗, t) | x⃗ ∈
dom(f), f(x⃗) ≤ t}, is convex.

Solution: Let’s prove the backward direction first. Recall,

epi(f) = {(x⃗, t) | x⃗ ∈ dom(f), f(x⃗) ≤ t} (33)

If epi(f) is a convex set, then for all (x⃗1, t1), (x⃗2, t2) ∈ epi(f) we have that λ(x⃗1, t1) + (1 − λ)(x⃗2, t2) ∈
epi(f) for λ ∈ [0, 1]. In particular, we let t1 = f(x1) and t2 = f(x2). By definition of the epigraph, we
have (λx⃗1 + (1 − λ)x⃗2, λf(x⃗1) + (1 − λ)f(x⃗2)) ∈ epi(f).
Therefore, f(λx⃗1 + (1 − λ)x⃗2) ≤ λf(x⃗1) + (1 − λ)f(x⃗2). Since this holds for all x⃗1, x⃗2 ∈ dom(f), we
have that f is convex.

To show the forward direction, for epi(f) to be a convex set, we need to satisfy the definition of convex set
S

λ(x⃗1, t1) + (1 − λ)(x⃗2, t2) ∈ S (34)

for λ ∈ [0, 1] and (x⃗1, t1), (x⃗2, t2) ∈ S. But from convexity of f we have that

f(λx⃗1 + (1 − λ)x⃗2) ≤ λf(x⃗1) + (1 − λ)f(x⃗2) (35)

≤ λt1 + (1 − λ)t2 (36)

which shows λ(x⃗1, t1) + (1 − λ)(x⃗2, t2) ∈ epi(f).
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7. Gradient Descent Algorithm

Given a continuous and differentiable function f : Rn → R, the gradient of f at any point x⃗, ∇f(x⃗), is
orthogonal to the level curve of f at point x⃗, and it points in the increasing direction of f . In other words,
moving from point x⃗ in the direction ∇f(x⃗) leads to an increase in the value of f , while moving in the direction
of −∇f(x⃗) decreases the value of f . This idea gives an iterative algorithm to minimize the function f : the
gradient descent algorithm.

(a) Consider f(x) = 1
2 (x− 2)2, and assume that we use the gradient descent algorithm:

xk+1 = xk − η∇f(xk) ∀k ≥ 0, (37)

with some random initialization x0, where η > 0 is the step size (or the learning rate) of the algorithm.
Write (xk − 2) in terms of (x0 − 2), and show that xk converges to 2, which is the unique minimizer of f ,
when η = 0.2.

Solution: For the given function, we have ∇f(x) = (x − 2); therefore, the gradient descent algorithm
gives

xk+1 = xk − η(xk − 2). (38)

By subtracting 2 from both sides, we obtain

(xk+1 − 2) = (1 − η)(xk − 2) =⇒ (xk − 2) = (1 − η)k(x0 − 2). (39)

Given η = 0.2, we have

|xk − 2| = 0.8k |x0 − 2| → 0 as k → ∞, (40)

which shows that xk converges to 2.

(b) Let α, β ∈ R and that for all η such that α < η < β, the gradient descent algorithm converges to 2 from all
possible initializations in R. What are the smallest α and the largest β? After you determine α, β, answer
the following. What happens when we set (i) η = α (ii) η = β (iii) η > β?

Solution: From the solution for part (a), we have

|xk − 2| = |1 − η|k |x0 − 2| ∀k ∈ N. (41)

For convergence of the algorithm for every initialization, it is necessary and sufficient to have |1 − η| < 1,
which is equivalent to η ∈ (0, 2). If η = 2 or η = 0, xk oscillates around 2 while |xk − 2| remains fixed.
If η > 2, xk oscillates around 2 while |xk| grows unboundedly.

(c) Now assume that we use the gradient descent algorithm to minimize f(x⃗) = 1
2

∥∥∥Ax⃗− b⃗
∥∥∥2

2
for some

A ∈ Rm×n and b⃗ ∈ Rm, where A has full column rank. First compute ∇f(x⃗). Note that (A⊤A)−1A⊤b⃗

is the solution to the least-squares problem, and (x⃗k − (A⊤A)−1A⊤b⃗) is the distance from the solution at
time k. Write (x⃗k − (A⊤A)−1A⊤b⃗) in terms of (x⃗0 − (A⊤A)−1A⊤b).
Solution: We can write f(x⃗) = 1

2 (x⃗⊤A⊤Ax⃗− x⃗⊤A⊤b⃗− b⃗⊤Ax⃗+ b⃗⊤b⃗), so

∇f(x⃗) = A⊤Ax⃗−A⊤b⃗. (42)
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Then the gradient descent algorithm gives

x⃗k+1 = x⃗k − η
(
A⊤Ax⃗k −A⊤b

)
= x⃗k − ηA⊤A

(
x⃗k − (A⊤A)−1A⊤b⃗

)
. (43)

By subtracting (A⊤A)−1A⊤b⃗ from both sides, we obtain(
x⃗k+1 − (A⊤A)−1A⊤b⃗

)
=

(
I − ηA⊤A

) (
x⃗k − (A⊤A)−1A⊤b⃗

)
(44)

and consequently, (
x⃗k − (A⊤A)−1A⊤b⃗

)
=

(
I − ηA⊤A

)k
(
x⃗0 − (A⊤A)−1A⊤b⃗

)
. (45)

(d) Now consider f(x⃗) = 1
2

∥∥∥Ax⃗− b⃗
∥∥∥2

2
+ 1

2λ ∥x⃗∥2
2 for some A ∈ Rm×n and b⃗ ∈ Rm, where A has full

column rank. Suppose we solve this problem via gradient descent with step-size η = 1
σ2

1+λ
, where σ1 is

the maximum singular value of A. Show the gradient descent converges.

Solution: We can write f(x⃗) = 1
2 (x⃗⊤A⊤Ax⃗− x⃗⊤A⊤b⃗− b⃗⊤Ax⃗+ b⃗⊤b⃗+ λx⃗⊤x⃗), so

∇f(x⃗) = A⊤Ax⃗−A⊤b⃗+ λx⃗ = (A⊤A+ λI)x⃗−A⊤b⃗

The least-squares solution to this problem is now x⋆ = (A⊤A + λI)−1A⊤b⃗. Let’s consider the distance
from x⋆ at time k+1(

x⃗k+1 − (A⊤A+ λI)−1A⊤b⃗
)

=
(
I − η(A⊤A+ λI)

) (
x⃗k − (A⊤A+ λI)−1A⊤b⃗

)
(46)

and consequently,(
x⃗k − (A⊤A+ λI)−1A⊤b⃗

)
=

(
I − η(A⊤A+ λI)

)k
(
x⃗0 − (A⊤A+ λI)−1A⊤b⃗

)
. (47)

For the algorithm to converge, we need the largest eigenvalue of (I − η(A⊤A + λI)) to be less than 1
in absolute value. We know any eigenvector vi of A⊤A is also eigenvector of I − η(A⊤A + λI) with
eigenvalue 1 − η(σ2

i + λ). With η = 1
σ2

1+λ
, where σ1 is the maximum singular value of A given, the

following inequality will always be true

∀i, |1 − η(σ2
i + λ)| < 1. (48)

Therefore, the gradient descent eventually converges to the least-squares solution x⋆.
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8. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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