
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 8

This homework is due at 11 PM on March 15, 2024.
Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers
(any handwritten answers should be scanned).

1. Quadratic inequalities

Consider the set S defined by the following inequalities:

(x1 ≥ −x2 + 1 and x1 ≤ 0) or (x1 ≤ −x2 + 1 and x1 ≥ 0) . (1)

To be more precise,

S1 = {x⃗ ∈ R2 | x1 ≥ −x2 + 1, x1 ≤ 0} (2)

S2 = {x⃗ ∈ R2 | x1 ≤ −x2 + 1, x1 ≥ 0} (3)

S = S1 ∪ S2. (4)

(a) Draw the set S. Is it convex?

(b) Show that the set S, can be described as a single quadratic inequality of the form
q(x⃗) = x⃗⊤Ax⃗ + 2⃗b⊤x⃗ + c ≤ 0, for matrix A = A⊤ ∈ R2×2, b⃗ ∈ R2 and c ∈ R i.e S can be written as
S = {x⃗ ∈ R2 | q(x⃗) ≤ 0}). Find A, b⃗, c.
Hint: Can you combine the constraints to make one quadratic constraint?

(c) Recall the definition of the convex hull of a set A ⊆ Rn is the set of all convex combinations of points in
A, i.e.,

conv(A) =
{

k∑
i=1

θix⃗i

∣∣∣∣∣ k ∈ N, θ1, . . . , θk ≥ 0,

k∑
i=1

θi = 1, x⃗1, . . . , x⃗k ∈ A

}
. (5)

What is the convex hull of S?

(d) We will now consider some convex optimization problems over S1 that illustrate the role of the constraints
in the optimization problem. For each of the following optimization problems find the optimal point, x⃗∗.
Describe the constraints that are active in attaining the optimal value. Hint: Suppose that there exists a
point x⃗ such that ∇f(x⃗) = 0. From the first order characterization of a convex function x⃗ would be an
optimum value for f subject to no constraints. If x⃗ is not in the constraint set S1, then the optimum point
must be on the boundary of the set, i.e. it satisfies at least one of the constraints defining S1 with equality.

i. Minimize f(x⃗) = (x1 + 1)2 + (x2 − 3)2 subject to x⃗ ∈ S1.

ii. Minimize f(x⃗) = (x1 + 2)2 + (x2 − 2)2 subject to x⃗ ∈ S1.

iii. Minimize f(x⃗) = x2
1 + x2

2 subject to x⃗ ∈ S1.
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2. Direction of Steepest Ascent

For a differentiable function f : Rn 7→ R we want to show that the gradient ∇f(x⃗) is the direction of steepest
ascent at the point x⃗.

(a) Let us define the rate of change of the function f(x⃗) at the point x⃗ along an arbitrary unit vector u⃗ as:

Du⃗f(x⃗) = lim
h→0

f(x⃗ + hu⃗) − f(x⃗)
h

. (6)

We call this the directional derivative. Show that the directional derivative can be equivalently expressed
as Du⃗f(x⃗) = u⃗⊤[∇f(x⃗)].
HINT: Use Taylor approximation of the function around the point x⃗ and evaluate it at the point x⃗ + hu⃗.

(b) Show that

∇f(x⃗)
∥∇f(x⃗)∥2

= argmax
∥u⃗∥2=1

u⃗⊤[∇f(x⃗)]. (7)
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3. Convergence of Gradient Descent for Ridge Regression

Let A ∈ Rm×n, y⃗ ∈ Rm, and λ > 0. Consider a slight variation of the ridge regression problem where the least
squares loss is normalized by the number of data points:

min
x⃗∈Rn

fλ(x⃗) where fλ(x⃗) .= 1
2

{
1
m

∥Ax⃗ − y⃗∥2
2 + λ ∥x⃗∥2

2

}
. (8)

In this problem, we will examine the behavior of gradient descent (GD) on this problem, and in particular the
interplay between the learning rate η > 0 and regularization parameter λ > 0 in determining convergence.

(a) Show that the unique solution to the problem in Equation (8) is

x⃗⋆
λ =

(
A⊤A + λmI

)−1
A⊤y⃗. (9)

(b) Show that the GD update

x⃗t+1 = x⃗t − η

(
1
m

A⊤(Ax⃗t − y⃗) + λx⃗t

)
(10)

can be rearranged into the form

x⃗t+1 − x⃗⋆
λ =

(
I − η

(
A⊤A

m
+ λI

))
(x⃗t − x⃗⋆

λ). (11)

Use this to show that

x⃗t − x⃗⋆
λ =

(
I − η

(
A⊤A

m
+ λI

))t

(x⃗0 − x⃗⋆
λ). (12)

for every positive integer t.

(c) We now discuss the insight that the SVD can give us regarding the convergence of GD. Let A = UΣV ⊤

be a full SVD of A. Let z⃗t = V ⊤x⃗t and z⃗⋆
λ = V ⊤x⃗⋆

λ. Show that

z⃗t − z⃗⋆
λ =

(
I − η

(
Σ⊤Σ

m
+ λI

))t

(z⃗0 − z⃗⋆
λ), (13)

and, moreover, show that for each i ∈ {1, . . . , n}, we have

(z⃗t)i − (z⃗⋆
λ)i =

(
1 − η

(
σi{A}2

m
+ λ

))t

((z⃗0)i − (z⃗⋆
λ)i) (14)

where σi{A} is the ith largest singular value of A. This shows that the rate of convergence of z⃗t to z⃗⋆
λ

along the ith component is influenced by the interaction between σi{A}, λ, and η, but critically no other
singular values. Thus, one considers the V basis to be the “natural” basis for thinking about GD for ridge
regression.

(d) Show that limt→∞ z⃗t = z⃗⋆
λ for all initializations x⃗0 = V z⃗0 if and only if

max
i∈{1,...,n}

∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ < 1. (15)

Use this to show that GD converges for all initializations x⃗0 if and only if

η ∈
(

0,
2m

σmax{A}2 + λm

)
(16)

where σmax{A} = σ1{A} is the largest singular value of A.
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(e) (OPTIONAL) One way we can derive an “optimal” learning rate η⋆ is to minimize the largest rate of
convergence:

η⋆ ∈ argmin
η∈R

max
i∈{1,...,n}

∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ . (17)

One important property of η⋆ is that it makes the rates of convergence
∣∣∣1 − η

(
σi{A}2

m + λ
)∣∣∣ associated

with the largest and smallest singular values of A equal. Use this property to show that

η⋆ = 2m

σmax{A}2 + σmin{A}2 + 2λm
(18)

where σmin{A} = σn{A} is the nth largest singular value of A.

NOTE: There are several useful notions of optimal learning rate; this is just one of them.

(f) The attached notebook, gd_convergence.ipynb, will examine the computational aspects of GD on ridge
regression. Implement the GD and stochastic gradient descent (SGD) functions at the top of the notebook,
which are marked with TODOs.

(g) Click through the notebook and run the sections n = 1, n = 2, and n ≫ 2. Change the values of λ and η

and re-run the cells a few times. Write down your observations about how the convergence of GD works
under different values of λ and η.

(h) In the sections n = 1, n = 2, and n ≫ 2, change the calls to GD to instead call SGD. Write down your
observations about how the convergence of SGD works under different values of λ and η. Compare the
behavior of GD and SGD.

(i) You might have noticed that if we think of convergence in the “last iterate” sense, i.e., limT →∞ x⃗T = x⃗⋆
λ,

then SGD rarely converges. This is because even if we reach the global optimum, the gradient estimate
used by SGD is in general nonzero, and so the iterates end up bouncing around near the optimum. Another
different, weaker, notion of convergence under which one might show that SGD actually does converge
is convergence “in time average”, i.e., limT →∞ x⃗T = x⃗⋆

λ where x⃗T
.= 1

T

∑T
t=1 x⃗t. Visualize this by

adding the argument time_avg=True to each plotting function; the plot will now visualize the sequence
of x⃗t. Re-run the notebook. Write down your observations, especially regarding the stability of SGD and
convergence in the last-iterate sense versus the time-average sense.
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4. Dual of the dual of a linear program

Consider a standard linear program P :

min
x⃗

c⃗⊤x⃗ (19)

s.t. Ax⃗ = b⃗ (20)

x⃗ ≥ 0⃗. (21)

where x⃗, c⃗ ∈ Rn, b⃗ ∈ Rm, A ∈ Rm×n. x⃗ ≥ 0⃗ means xi ≥ 0 for all i = 1, . . . , n.

(a) Formulate the Lagrangian of the problem P , and write the dual problem.

Note: The dual problem should not have the variable x⃗.

(b) Express the dual problem as an equivalent minimization problem. Find the dual of this minimization
problem, i.e., the dual of the dual. Compare it to the original linear program formulation.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5



EECS 127/227AT Homework 8 2024-03-16 16:16:38-07:00

5. Minimizing a Sum of Logarithms

Consider the following problem, which arises in estimation of transition probabilities of a discrete-time Markov
chain:

p⋆ = max
x⃗∈Rn

n∑
i=1

αi log(xi) (22)

s.t. x⃗ ≥ 0, 1⃗⊤x⃗ = c, (23)

where c > 0 and αi > 0, i = 1, . . . , n. (Recall that if x⃗ is a vector then by “x⃗ ≥ 0” we mean “xi ≥ 0 for each
i.”) We will determine in closed-form a minimizer, and show that the optimal objective value of this problem is

p⋆ = α log(c/α) +
n∑

i=1
αi log(αi), (24)

where α
.=

∑n
i=1 αi. We will show this in a series of steps.

(a) First, express the problem as a minimization problem which has optimal value p⋆
min.

(b) In optimization, we often “relax” problems of the form p⋆
min = minx⃗∈X f0(x⃗), i.e., replacing the constraint

set X with a larger constraint set Xr, and instead solving p⋆
r = minx⃗∈Xr

f0(x⃗), then showing a connection
between p⋆

min and p⋆
r . In this problem, a particular relaxation we will use is to replace the equality constraint

1⃗⊤x⃗ = c with an inequality constraint 1⃗⊤x⃗ ≤ c.

Show that the relaxed problem has the same optimal value as the original problem, i.e., p⋆
r = p⋆

min, and the
two problems have the same solutions.

HINT: First argue that p⋆
r ≤ p⋆

min. Then, suppose for the sake of contradiction that p⋆
r < p⋆

min. Let x⃗r be a
solution to the relaxed minimization problem which has objective value p⋆

r . Consider the vector x⃗ given by

x⃗
.=


c − 1⊤x⃗r + xr

1

xr
2
...

xr
n

 . (25)

Show that x⃗ is feasible for the original problem and has objective value < p⋆
r . Argue that this implies

p⋆
min < p⋆

r and derive a contradiction. Finally, argue that any solution to the relaxed problem is a solution
to the original problem, and vice-versa — you might need to use a construction similar to x⃗.

(c) After relaxing the equality constraint to an inequality constraint, form the Lagrangian L(x⃗, λ⃗, µ) for the
relaxed minimization problem, where λi is the dual variable corresponding to the inequality xi ≥ 0, and
µ is the dual variable corresponding to the inequality constraint 1⃗⊤x⃗ ≤ c.

(d) Now derive the dual function g(λ⃗, µ) for the relaxed minimization problem, and solve the dual problem
d⋆

r = max
λ⃗≥0⃗
µ≥0

g(λ⃗, µ). What are the optimal dual variables λ⃗⋆, µ⋆?

(e) Show that strong duality holds for the relaxed problem, so p⋆
r = d⋆

r .

(f) From the λ⃗⋆, µ⋆ obtained in the previous part, how do we obtain the optimal primal variable x⃗⋆? What is
the optimal objective function value p⋆

r? Finally, what is p⋆?
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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