
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 8

Self grades are due at 11 PM on March 22, 2024.

1. Quadratic inequalities

Consider the set S defined by the following inequalities:

(x1 ≥ −x2 + 1 and x1 ≤ 0) or (x1 ≤ −x2 + 1 and x1 ≥ 0) . (1)

To be more precise,

S1 = {x⃗ ∈ R2 | x1 ≥ −x2 + 1, x1 ≤ 0} (2)

S2 = {x⃗ ∈ R2 | x1 ≤ −x2 + 1, x1 ≥ 0} (3)

S = S1 ∪ S2. (4)

(a) Draw the set S. Is it convex?

Solution:

Figure 1: Set S

The set S as shown in Fig. 1 is not convex. We can prove this by counterexample. (0, 2) and (1, 0) both
belong to the set, but the midpoint (1/2, 1) does not.

(b) Show that the set S, can be described as a single quadratic inequality of the form
q(x⃗) = x⃗⊤Ax⃗ + 2⃗b⊤x⃗ + c ≤ 0, for matrix A = A⊤ ∈ R2×2, b⃗ ∈ R2 and c ∈ R i.e S can be written as
S = {x⃗ ∈ R2 | q(x⃗) ≤ 0}). Find A, b⃗, c.
Hint: Can you combine the constraints to make one quadratic constraint?
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Solution: Within set S, x1 + x2 − 1 ≥ 0 when x1 ≤ 0 and x1 + x2 − 1 ≤ 0 when x1 ≥ 0. It follows that
q(x⃗) = x1(x1 + x2 − 1) ≤ 0 if and only if it is in the set. Expressing q(x⃗) in the desired form:

q(x⃗) = x2
1 + x1x2 − x1 = x⃗⊤Ax⃗ + 2⃗b⊤x⃗ + c

where

A =
[

1 1/2
1/2 0

]
, b⃗ =

[
−1/2

0

]
, c = 0.

(c) Recall the definition of the convex hull of a set A ⊆ Rn is the set of all convex combinations of points in
A, i.e.,

conv(A) =
{

k∑
i=1

θix⃗i

∣∣∣∣∣ k ∈ N, θ1, . . . , θk ≥ 0,

k∑
i=1

θi = 1, x⃗1, . . . , x⃗k ∈ A

}
. (5)

What is the convex hull of S?

Solution: The convex hull of the set is the whole space, R2. To see this note than any point z = (z1, z2) ∈
R2 can be written as z = x+y

2 with x, y ∈ S as follows:
x = (2z1, 1 − 2z1), y = (0, 2(z1 + z2) − 1).

(d) We will now consider some convex optimization problems over S1 that illustrate the role of the constraints
in the optimization problem. For each of the following optimization problems find the optimal point, x⃗∗.
Describe the constraints that are active in attaining the optimal value. Hint: Suppose that there exists a
point x⃗ such that ∇f(x⃗) = 0. From the first order characterization of a convex function x⃗ would be an
optimum value for f subject to no constraints. If x⃗ is not in the constraint set S1, then the optimum point
must be on the boundary of the set, i.e. it satisfies at least one of the constraints defining S1 with equality.

i. Minimize f(x⃗) = (x1 + 1)2 + (x2 − 3)2 subject to x⃗ ∈ S1.
Solution: We first compute the unconstrained optimal value of f . Notice that f is a convex function.
Therefore, we can compute its optimal value by computing its gradient and setting it to 0. Doing so,
we obtain the optimal value of f to be 0 attained at the point x⃗∗ = (−1, 3). Now, since x⃗∗ ∈ S1, x⃗∗

is the solution to the constrained optimization problem as well.
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Figure 2: This figure illustrates the position of the optimum, x∗ = (−1, 3), and the level sets of the objective function, f , which
are concentric circles around x∗.

ii. Minimize f(x⃗) = (x1 + 2)2 + (x2 − 2)2 subject to x⃗ ∈ S1.
Solution: Proceeding as in the proof for the previous problem, we first find the solution to the
unconstrained optimization problem. We get that the unconstrained problem is minimized at the point
x⃗∗

u = (−2, 2). However, this point is not in the feasible set, S1. Therefore, the true optimum, x⃗∗, has
one or more constraints active. Now, we will attempt to solve the problem with one active constraint.
Suppose the one active constraint is x1 ≥ −x2 + 1. Since this constraint is active, we must try and
minimize f(x⃗) subject to x⃗ satisfying x1 = −x2 + 1. Note that any point on this line can be written
in the form (0, 1) + α(−1, 1). Now consider the function, g(α):

g(α) = f((0, 1) + α(−1, 1)) = (α − 2)2 + (α − 1)2.

Note that the function, f(α), is convex in α. Therefore, we can minimize g(α) by taking its derivative
and setting it to 0. By doing this, we get that α = 3/2 is the unique minimizer of g(α). Therefore,
the minimizer of f subject to x1 = −x2 + 1 is the point (−3/2, 5/2), and the function value is 0.5.
Similarly, the minimizer of f assuming the second constraint, x1 ≤ 0, is active is obtained at the point
(0, 2), and the function value at this point is 4, which is higher than the value at (−3/2, 5/2). The
final possibility is that both constraints are active. However, the optimal value of f subject to both
constraints being active will be greater than the value of f obtained at (−3/2, 5/2) which is in S1.
Therefore, we get that f(x⃗) is minimized at the point x⃗∗ = (−3/2, 5/2) subject to x⃗ ∈ S1. There is
one active constraint at x⃗∗.
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Figure 3: This figure illustrates the position of the optimum, x∗ = (−3/2, 5/2), and the level sets of the objective function, f ,
which are concentric circles around (−2, 2). Note that in this case, the unconstrained optimum does not lie in the set, S1 and the
optimal point lies on the boundary of one of the constraints.

iii. Minimize f(x⃗) = x2
1 + x2

2 subject to x⃗ ∈ S1.
Solution: Proceeding as before, we first check the case where 0 constraints are active. However, the
unconstrained minimizer of f is (0, 0) which is not in S1. Now, we check the cases where one of
the constraints is active. Assume that the constraint x1 ≤ 0 is active. In this case the optimizer is
again obtained at the point (0, 0) which is not in S1. We then consider the case where the constraint
x1 ≥ −x2 + 1 is active. As before, we define the function, g(α) as:

g(α) = f((0, 1) + α(−1, 1)) = α2 + (α + 1)2.

By optimizing over α by setting its gradient with respect to α and setting it to 0, we get the optimal
setting of α is −1/2. However, note that the point (1/2, 1/2) does not belong to S1 either. Therefore,
the only remaining possibility is the possibility that both constraints are active. This can happen solely
at the point (0, 1). At this point, the value of the function f is 1, the optimizer x⃗∗ = (0, 1) and both
constraints are active at x⃗∗.
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Figure 4: This figure illustrates the position of the optimum, x∗ = (0, 1), and the level sets of the objective function, f , which are
concentric circles around (0, 0). Note that in this case, the unconstrained optimum does not lie in the set, S1 and the optimal point
lies on the boundary of both of the constraints.
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2. Direction of Steepest Ascent

For a differentiable function f : Rn 7→ R we want to show that the gradient ∇f(x⃗) is the direction of steepest
ascent at the point x⃗.

(a) Let us define the rate of change of the function f(x⃗) at the point x⃗ along an arbitrary unit vector u⃗ as:

Du⃗f(x⃗) = lim
h→0

f(x⃗ + hu⃗) − f(x⃗)
h

. (6)

We call this the directional derivative. Show that the directional derivative can be equivalently expressed
as Du⃗f(x⃗) = u⃗⊤[∇f(x⃗)].
HINT: Use Taylor approximation of the function around the point x⃗ and evaluate it at the point x⃗ + hu⃗.

Solution: Using Taylor’s theorem we can express the function f(x⃗) as

f(x⃗ + hu⃗) = f(x⃗) + [∇f(x⃗)]⊤[hu⃗] + o(h). (7)

We rearrange the terms, and dividing both sides by h we get

f(x⃗ + hu⃗) − f(x⃗)
h

= [∇f(x⃗)]⊤[u⃗] + o(h)
h

. (8)

Now we take the limit of both sides as h → 0; we get

lim
h→0

f(x⃗ + hu⃗) − f(x⃗)
h

= [∇f(x⃗)]⊤[u⃗] + lim
h→0

(
o(h)

h

)
(9)

= [∇f(x⃗)]⊤[u⃗]. (10)

Note that limh→0
o(h)

h = 0 because o(h) decays faster than h as h → 0.

(b) Show that

∇f(x⃗)
∥∇f(x⃗)∥2

= argmax
∥u⃗∥2=1

u⃗⊤[∇f(x⃗)]. (11)

Solution: Using Cauchy-Schwarz inequality we can write:

u⃗⊤[∇f(x⃗)] ≤ ∥u⃗∥2∥∇f(x⃗)∥2 (12)

= ∥∇f(x⃗)∥2, (13)

so the maximum value that the expression can take is ∥∇f(x⃗)∥2. Now it remains to show that this value is
attained for the choice u⃗ = ∇f(x⃗)

∥∇f(x⃗)∥2
.

[
∇f(x⃗)

]⊤

∥∇f(x⃗)∥2
∇f(x⃗) = ∥∇f(x⃗)∥2

2
∥∇f(x⃗)∥2

(14)

= ∥∇f(x⃗)∥2. (15)
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3. Convergence of Gradient Descent for Ridge Regression

Let A ∈ Rm×n, y⃗ ∈ Rm, and λ > 0. Consider a slight variation of the ridge regression problem where the least
squares loss is normalized by the number of data points:

min
x⃗∈Rn

fλ(x⃗) where fλ(x⃗) .= 1
2

{
1
m

∥Ax⃗ − y⃗∥2
2 + λ ∥x⃗∥2

2

}
. (16)

In this problem, we will examine the behavior of gradient descent (GD) on this problem, and in particular the
interplay between the learning rate η > 0 and regularization parameter λ > 0 in determining convergence.

(a) Show that the unique solution to the problem in Equation (16) is

x⃗⋆
λ =

(
A⊤A + λmI

)−1
A⊤y⃗. (17)

Solution: The function λ ∥x⃗∥2
2 in Equation (16) is strictly convex, so fλ is strictly convex. Thus the

problem in Equation (16) has strictly convex objective and convex feasible set Rn, so it has at most one
solution. And we can find a solution by setting the gradient to 0⃗:

∇fλ(x⃗⋆
λ) = 1

m
A⊤(Ax⃗⋆

λ − y⃗) + λx⃗⋆
λ (18)

=
(

A⊤A

m
+ λI

)
x⃗⋆

λ − 1
m

A⊤y⃗ (19)

=⇒
(

A⊤A

m
+ λI

)
x⃗⋆

λ = 1
m

A⊤y⃗ (20)

=⇒
(
A⊤A + λmI

)
x⃗⋆

λ = A⊤y⃗ (21)

=⇒ x⃗⋆
λ =

(
A⊤A + λmI

)−1
A⊤y⃗. (22)

(b) Show that the GD update

x⃗t+1 = x⃗t − η

(
1
m

A⊤(Ax⃗t − y⃗) + λx⃗t

)
(23)

can be rearranged into the form

x⃗t+1 − x⃗⋆
λ =

(
I − η

(
A⊤A

m
+ λI

))
(x⃗t − x⃗⋆

λ). (24)

Use this to show that

x⃗t − x⃗⋆
λ =

(
I − η

(
A⊤A

m
+ λI

))t

(x⃗0 − x⃗⋆
λ). (25)

for every positive integer t.

Solution: We have

x⃗t+1 = x⃗t − η

(
1
m

A⊤(Ax⃗t − y⃗) + λx⃗t

)
(26)

= x⃗t − η · A⊤A

m
x⃗t + η · 1

m
A⊤y⃗ + ηλx⃗t (27)

=
(

I − η

(
A⊤A

m
+ λI

))
x⃗t + η · 1

m
A⊤y⃗ (28)
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=⇒ x⃗t+1 − x⃗⋆
λ =

(
I − η

(
A⊤A

m
+ λI

))
x⃗t + η ·

(
A⊤A

m
+ λI

)
x⃗⋆

λ − x⃗⋆
λ (29)

=
(

I − η

(
A⊤A

m
+ λI

))
(x⃗t − x⃗⋆

λ). (30)

Iterating this relation obtains the second equality.

(c) We now discuss the insight that the SVD can give us regarding the convergence of GD. Let A = UΣV ⊤

be a full SVD of A. Let z⃗t = V ⊤x⃗t and z⃗⋆
λ = V ⊤x⃗⋆

λ. Show that

z⃗t − z⃗⋆
λ =

(
I − η

(
Σ⊤Σ

m
+ λI

))t

(z⃗0 − z⃗⋆
λ), (31)

and, moreover, show that for each i ∈ {1, . . . , n}, we have

(z⃗t)i − (z⃗⋆
λ)i =

(
1 − η

(
σi{A}2

m
+ λ

))t

((z⃗0)i − (z⃗⋆
λ)i) (32)

where σi{A} is the ith largest singular value of A. This shows that the rate of convergence of z⃗t to z⃗⋆
λ

along the ith component is influenced by the interaction between σi{A}, λ, and η, but critically no other
singular values. Thus, one considers the V basis to be the “natural” basis for thinking about GD for ridge
regression.

Solution: If A = UΣV ⊤ then

A⊤A = V Σ⊤U⊤UΣV ⊤ = V Σ⊤ΣV ⊤. (33)

Thus we have

x⃗t − x⃗⋆
λ =

(
I − η

(
A⊤A

m
+ λI

))t

(x⃗0 − x⃗⋆
λ) (34)

=
(

I − η

(
V Σ⊤ΣV ⊤

m
+ λI

))t

(x⃗0 − x⃗⋆
λ) (35)

=
(

I − η

(
V

(
Σ⊤Σ

m
+ λI

)
V ⊤

))t

(x⃗0 − x⃗⋆
λ) (36)

=
(

I − ηV

(
Σ⊤Σ

m
+ λI

)
V ⊤

)t

(x⃗0 − x⃗⋆
λ) (37)

=
(

V

(
I − η

(
Σ⊤Σ

m
+ λI

))
V ⊤

)t

(x⃗0 − x⃗⋆
λ) (38)

= V

(
I − η

(
Σ⊤Σ

m
+ λI

))t

V ⊤(x⃗0 − x⃗⋆
λ) (39)

=⇒ V ⊤(x⃗t − x⃗⋆
λ) =

(
I − η

(
Σ⊤Σ

m
+ λI

))t

V ⊤(x⃗0 − x⃗⋆
λ) (40)

=⇒ z⃗t − z⃗⋆
λ =

(
I − η

(
Σ⊤Σ

m
+ λI

))t

(z⃗0 − z⃗⋆
λ). (41)

Now note that the quantity I − η( Σ⊤Σ
m + λI) is a diagonal matrix. Thus we have

z⃗t − z⃗⋆
λ =

(
I − η

(
Σ⊤Σ

m
+ λI

))t

(z⃗0 − z⃗⋆
λ) (42)
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=⇒ (z⃗t − z⃗⋆
λ)i =

(
I − η

(
Σ⊤Σ

m
+ λI

))t

i

(z⃗0 − z⃗⋆
λ)i (43)

=⇒ (z⃗t)i − (z⃗⋆
λ)i =

(
1 − η

(
σi{A}2

m
+ λ

))t

((z⃗0)i − (z⃗⋆
λ)i) (44)

(d) Show that limt→∞ z⃗t = z⃗⋆
λ for all initializations x⃗0 = V z⃗0 if and only if

max
i∈{1,...,n}

∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ < 1. (45)

Use this to show that GD converges for all initializations x⃗0 if and only if

η ∈
(

0,
2m

σmax{A}2 + λm

)
(46)

where σmax{A} = σ1{A} is the largest singular value of A.

Solution: We have

lim
t→∞

z⃗t = z⃗⋆
λ, ∀x⃗0 (47)

⇐⇒ lim
t→∞

(z⃗t)i = (z⃗⋆
λ)i, ∀i ∀x⃗0 (48)

⇐⇒ lim
t→∞

(
1 − η

(
σi{A}2

m
+ λ

))t

= 0, ∀i (49)

⇐⇒
∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ < 1, ∀i (50)

⇐⇒ max
i∈{1,...,n}

∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ < 1. (51)

This proves the first part of the question. The second part of the question follows by noting that

max
i∈{1,...,n}

∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ < 1 (52)

⇐⇒ max
i∈{1,...,n}

(
1 − η

(
σi{A}2

m
+ λ

))
< 1 (53)

and min
i∈{1,...,n}

(
1 − η

(
σi{A}2

m
+ λ

))
> −1 (54)

⇐⇒ 1 − η

(
σmin{A}2

m
+ λ

)
< 1 (55)

and 1 − η

(
σmax{A}2

m
+ λ

)
> −1. (56)

Now the first equation is always satisfied for η > 0 and λ > 0 because σmin{A}2

m + λ > 0 so 1 −
η( σmin{A}2

m + λ) < 1. The second equation is satisfied when η < 2m
σmax{A}2+λm . Since limt→∞ x⃗t = x⃗⋆

λ

if and only if limt→∞ z⃗t = z⃗⋆
λ, we have that gradient descent converges for all initializations x⃗0 if and only

if 0 < η < 2m
σmax{A}2+λm .

(e) (OPTIONAL) One way we can derive an “optimal” learning rate η⋆ is to minimize the largest rate of
convergence:

η⋆ ∈ argmin
η∈R

max
i∈{1,...,n}

∣∣∣∣1 − η

(
σi{A}2

m
+ λ

)∣∣∣∣ . (57)
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One important property of η⋆ is that it makes the rates of convergence
∣∣∣1 − η

(
σi{A}2

m + λ
)∣∣∣ associated

with the largest and smallest singular values of A equal. Use this property to show that

η⋆ = 2m

σmax{A}2 + σmin{A}2 + 2λm
(58)

where σmin{A} = σn{A} is the nth largest singular value of A.

NOTE: There are several useful notions of optimal learning rate; this is just one of them.

Solution: We have∣∣∣∣1 − η⋆

(
σmin{A}2

m
+ λ

)∣∣∣∣ =
∣∣∣∣1 − η⋆

(
σmax{A}2

m
+ λ

)∣∣∣∣ (59)

1 − η⋆

(
σmin{A}2

m
+ λ

)
= −

(
1 − η⋆

(
σmax{A}2

m
+ λ

))
(60)

1 − η⋆

(
σmin{A}2

m
+ λ

)
= η⋆

(
σmax{A}2

m
+ λ

)
− 1 (61)

2 = η⋆

(
σmax{A}2 + σmin{A}2

m
+ 2λ

)
(62)

η⋆ = 2m

σmax{A}2 + σmin{A}2 + 2mλ
. (63)

Here the second equality is the most challenging to derive. It follows from the first inequality by the
following reasoning:

• If 1 − η⋆
(

σmin{A}2

m + λ
)

and 1 − η⋆
(

σmax{A}2

m + λ
)

have the same sign, then by the first equality,
they must be equal. This means that σmax{A} = σ1{A} = σ2{A} = · · · = σn{A} = σmin{A}
and the optimal learning rate η⋆ sets each rate 1 − η⋆

(
σi{A}2

m + λ
)

to 0 simultaneously, ensuring
convergence in one step. If both sides are 0 then the second equality holds (because 0 = −0).

• Otherwise, 1−η⋆
(

σmin{A}2

m + λ
)

and 1−η⋆
(

σmax{A}2

m + λ
)

have opposite signs. Since σmax{A} >

σmin{A} (since if they were equal we would be in the first case), we have 1 − η⋆
(

σmin{A}2

m + λ
)

>

1 − η⋆
(

σmax{A}2

m + λ
)

. Thus 1 − η⋆
(

σmin{A}2

m + λ
)

must be positive and 1 − η⋆
(

σmax{A}2

m + λ
)

must be negative. The absolute value of a negative number is its negative, so the second equality
follows directly from the first equality.

(f) The attached notebook, gd_convergence.ipynb, will examine the computational aspects of GD on ridge
regression. Implement the GD and stochastic gradient descent (SGD) functions at the top of the notebook,
which are marked with TODOs.

(g) Click through the notebook and run the sections n = 1, n = 2, and n ≫ 2. Change the values of λ and η

and re-run the cells a few times. Write down your observations about how the convergence of GD works
under different values of λ and η.

Solution: We know from previous parts that when η ≥
(

2m
σmax{A}2+λm

)
, gradient descent does not

converge. This is also observed in the notebook that when η is increased by too much, gradient descent
does not converge. Moreover, when η is too small, it does not converge within the prescribed number of
iterations either.

(h) In the sections n = 1, n = 2, and n ≫ 2, change the calls to GD to instead call SGD. Write down your
observations about how the convergence of SGD works under different values of λ and η. Compare the
behavior of GD and SGD.
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Solution: It is much harder to tune λ and η to make stochastic gradient descent converge. Due to the
randomness, the trajectory is much noisier than gradient descent.

(i) You might have noticed that if we think of convergence in the “last iterate” sense, i.e., limT →∞ x⃗T = x⃗⋆
λ,

then SGD rarely converges. This is because even if we reach the global optimum, the gradient estimate
used by SGD is in general nonzero, and so the iterates end up bouncing around near the optimum. Another
different, weaker, notion of convergence under which one might show that SGD actually does converge
is convergence “in time average”, i.e., limT →∞ x⃗T = x⃗⋆

λ where x⃗T
.= 1

T

∑T
t=1 x⃗t. Visualize this by

adding the argument time_avg=True to each plotting function; the plot will now visualize the sequence
of x⃗t. Re-run the notebook. Write down your observations, especially regarding the stability of SGD and
convergence in the last-iterate sense versus the time-average sense.

Solution: When η is set too large, the trajectories don’t converge no matter when time_avg=True or when
time_avg=False. On the other hand, when η is not set too large, the trajectories under time_avg=True
don’t bounce around that much near the optimum compared with when time_avg=False. Instead, the
closer x⃗ is to the optimum, the more stablized it becomes, which shows that it converges in the limit.
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4. Dual of the dual of a linear program

Consider a standard linear program P :

min
x⃗

c⃗⊤x⃗ (64)

s.t. Ax⃗ = b⃗ (65)

x⃗ ≥ 0⃗. (66)

where x⃗, c⃗ ∈ Rn, b⃗ ∈ Rm, A ∈ Rm×n. x⃗ ≥ 0⃗ means xi ≥ 0 for all i = 1, . . . , n.

(a) Formulate the Lagrangian of the problem P , and write the dual problem.

Note: The dual problem should not have the variable x⃗.

Solution: Denote the dual variable associated with the equality constraint in P by ν⃗ ∈ Rm, and the dual
variable associated with the inequality by λ⃗ ∈ Rn. The Lagrangian of P is given by

L(x⃗, ν⃗, λ⃗) = c⃗⊤x⃗ + ν⃗⊤(Ax⃗ − b⃗) + λ⊤(−x⃗) = −b⃗⊤ν⃗ + (c⃗ + A⊤ν⃗ − λ⃗)⊤x⃗. (67)

To get the dual problem, we take the minimum of the Lagrangian with respect to our primal variable x⃗, i.e.,

g(ν⃗) = min
x⃗

L(x⃗, ν⃗, λ⃗) =

−b⃗⊤ν⃗ if c⃗ + A⊤ν⃗ − λ⃗ = 0⃗

−∞ otherwise.
(68)

The dual problem is then given by D:

max
ν⃗,λ⃗

− b⃗⊤ν⃗ (69)

s.t. c⃗ + A⊤ν⃗ − λ⃗ = 0⃗ (70)

λ⃗ ≥ 0⃗. (71)

We can simplify this further by noting that λ⃗ is constrained to be λ⃗ ≥ 0⃗, since it is the dual variable
associated with an inequality constraint. Then, c⃗ + A⊤ν⃗ − λ⃗ = 0⃗ ⇐⇒ c⃗ + A⊤ν⃗ = λ⃗ ≥ 0⃗, and we can
eliminate λ⃗ to get

max
ν⃗

− b⃗⊤ν⃗ (72)

s.t. c⃗ + A⊤ν⃗ ≥ 0⃗. (73)

(b) Express the dual problem as an equivalent minimization problem. Find the dual of this minimization
problem, i.e., the dual of the dual. Compare it to the original linear program formulation.

Solution: Say the optimal value for the dual problem is given by

d∗ = max
ν⃗

−b⃗⊤ν⃗ s.t. c⃗ + A⊤ν⃗ ≥ 0⃗. (74)

The dual problem can be expressed by an equivalent minimization problem:

d∗ = − min
ν⃗

b⃗⊤ν⃗ (75)

s.t. c⃗ + A⊤ν⃗ ≥ 0. (76)
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We call the minimization problem our new primal problem P ′. We can obtain the dual problem of the
problem in 74 by dualizing P ′ while ignoring the negative sign, and then adding it back in at the end.
Denote the dual variable associated with the inequality constraint c⃗+A⊤ν⃗ ≥ 0 by z⃗ ∈ Rn. The Lagrangian
for P ′ is given by

L(ν⃗, z⃗) = b⃗⊤ν⃗ + z⃗⊤(−c⃗ − A⊤ν⃗) = −c⃗⊤z⃗ + (−Az⃗ + b⃗)⊤ν⃗. (77)

The dual is given by taking the minimum of the Lagrangian over the primal variable of the problem we are
dualizing, i.e., ν⃗.

h(z⃗) = min
ν⃗

L(ν⃗, z⃗) =

−c⃗⊤z⃗ if Az⃗ − b⃗ = 0

−∞ otherwise.
(78)

The dual problem for P ′ is then given by

max
z⃗

− c⃗⊤z⃗ (79)

s.t. Az⃗ = b⃗ (80)

z⃗ ≥ 0⃗. (81)

Then the dual of the problem obtained in part a) is given by

− maxz⃗ −c⃗⊤z⃗

s.t. Az⃗ = b⃗

z⃗ ≥ 0⃗
=

minz⃗ c⃗⊤z⃗

s.t. Az⃗ = b⃗

z⃗ ≥ 0⃗
(82)

which is the linear problem in (64). This tells us that the dual of the dual of a linear program is the same
linear program.
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5. Minimizing a Sum of Logarithms

Consider the following problem, which arises in estimation of transition probabilities of a discrete-time Markov
chain:

p⋆ = max
x⃗∈Rn

n∑
i=1

αi log(xi) (83)

s.t. x⃗ ≥ 0, 1⃗⊤x⃗ = c, (84)

where c > 0 and αi > 0, i = 1, . . . , n. (Recall that if x⃗ is a vector then by “x⃗ ≥ 0” we mean “xi ≥ 0 for each
i.”) We will determine in closed-form a minimizer, and show that the optimal objective value of this problem is

p⋆ = α log(c/α) +
n∑

i=1
αi log(αi), (85)

where α
.=

∑n
i=1 αi. We will show this in a series of steps.

(a) First, express the problem as a minimization problem which has optimal value p⋆
min.

Solution: We have
max
x⃗∈Rn

f0(x⃗) = − min
x⃗∈Rn

(−f0(x⃗)), (86)

so

p⋆ = − min
x⃗∈Rn

n∑
i=1

−αi log(xi) (87)

s.t. x⃗ ≥ 0, 1⃗⊤x⃗ = c. (88)

The minimization problem we now consider is

p⋆
min = min

x⃗∈Rn

n∑
i=1

−αi log(xi) (89)

s.t. x⃗ ≥ 0, 1⃗⊤x⃗ = c, (90)

so that p⋆
min = −p⋆.

(b) In optimization, we often “relax” problems of the form p⋆
min = minx⃗∈X f0(x⃗), i.e., replacing the constraint

set X with a larger constraint set Xr, and instead solving p⋆
r = minx⃗∈Xr

f0(x⃗), then showing a connection
between p⋆

min and p⋆
r . In this problem, a particular relaxation we will use is to replace the equality constraint

1⃗⊤x⃗ = c with an inequality constraint 1⃗⊤x⃗ ≤ c.

Show that the relaxed problem has the same optimal value as the original problem, i.e., p⋆
r = p⋆

min, and the
two problems have the same solutions.

HINT: First argue that p⋆
r ≤ p⋆

min. Then, suppose for the sake of contradiction that p⋆
r < p⋆

min. Let x⃗r be a
solution to the relaxed minimization problem which has objective value p⋆

r . Consider the vector x⃗ given by

x⃗
.=


c − 1⊤x⃗r + xr

1

xr
2
...

xr
n

 . (91)
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Show that x⃗ is feasible for the original problem and has objective value < p⋆
r . Argue that this implies

p⋆
min < p⋆

r and derive a contradiction. Finally, argue that any solution to the relaxed problem is a solution
to the original problem, and vice-versa — you might need to use a construction similar to x⃗.

Solution: We want to show that the relaxed problem

p⋆
r = min

x⃗∈Rn

n∑
i=1

−αi log(xi) (92)

s.t. x⃗ ≥ 0, 1⃗⊤x⃗ ≤ c, (93)

has the same set of solutions as the original minimization problem. We begin by showing that p⋆
min = p⋆

r .
Indeed, since the relaxed problem minimizes the same objective function over a larger feasible set, p⋆

r ≤
p⋆

min. We now show that p⋆
r ≥ p⋆

min.

Suppose for the sake of contradiction that x⃗r is an optimal solution to the relaxed problem which achieves
objective value p⋆

r < p⋆
min. If x⃗r were feasible for the original minimization problem, then it would be a

better solution than the solutions which achieve p⋆
min, which is already a contradiction. Thus, suppose x⃗r

is infeasible for the original minimization problem, i.e., 1⃗⊤x⃗r < c. Then consider the following solution
vector:

x⃗⋆ .=


c − 1⃗⊤x⃗r + xr

1

xr
2
...

xr
n

 . (94)

We claim that this choice of solution vector both fulfills all the constraints of the original problem, and
achieves a better optimal value. In both parts, we use a crucial inequality:

x⋆
1 = (c − 1⃗⊤x⃗r)︸ ︷︷ ︸

>0

+xr
1 > xr

1. (95)

To show that x⃗⋆ ≥ 0, we just need to show that the first entry x⋆
1 is non-negative. This is given by

x⋆
1 > xr

1 ≥ 0.

To show that 1⃗⊤x⃗⋆ = c, we calculate:

1⃗⊤x⃗⋆ =
n∑

i=1
x⋆

i (96)

= x⋆
1 +

n∑
i=2

x⋆
i (97)

= c − 1⃗⊤x⃗r + xr
1 +

n∑
i=2

x⋆
i (98)

= c − 1⃗⊤x⃗r +
n∑

i=1
x⋆

i (99)

= c. (100)

Finally, we show that the objective value is strictly improved:
n∑

i=1
−αi log(x⋆

i ) = −α1 log(x⋆
1) +

n∑
i=2

−αi log(x⋆
i ) (101)
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< −α1 log(xr
1) +

n∑
i=2

−αi log(x⋆
i ) (102)

= −α1 log(xr
1) +

n∑
i=2

−αi log(xr
i ) (103)

=
n∑

i=1
−αi log(xr

i ). (104)

Thus x⃗r could not be a solution to the relaxed problem, a contradiction.

This establishes that p⋆
r ≥ p⋆

min and thus p⋆
r = p⋆

min. This argument also shows that all solutions for
the relaxed problem are feasible for the original problem, and since p⋆

r = p⋆
min, they are the same set of

solutions.

How did we cook up x⃗⋆? The main idea is that since the objective function considered each xi independently,
one can come up with a “better” point for any suboptimal point xr just by moving one of the xi, in our case
x1. And since it’s monotonically decreasing in each xi, we can make the xi larger to get the desired result.
Finally, also because the objective is monotonically decreasing in each xi, we should make the xi as large
as possible subject to the constraints; this is how we came up with the fact that x⋆

1 needs to be large. The
precise value of x⋆

1 is just bookkeeping to ensure that the constraint hits equality for x⃗⋆.

(c) After relaxing the equality constraint to an inequality constraint, form the Lagrangian L(x⃗, λ⃗, µ) for the
relaxed minimization problem, where λi is the dual variable corresponding to the inequality xi ≥ 0, and
µ is the dual variable corresponding to the inequality constraint 1⃗⊤x⃗ ≤ c.

Solution: The Lagrangian for this problem is

L(x⃗, µ) =
n∑

i=1
αi log(1/xi) +

n∑
i=1

λi(−xi) + µ(⃗1⊤x⃗ − c) (105)

=
n∑

i=1
(αi log(1/xi) + (µ − λi)xi) − µc, (106)

(d) Now derive the dual function g(λ⃗, µ) for the relaxed minimization problem, and solve the dual problem
d⋆

r = max
λ⃗≥0⃗
µ≥0

g(λ⃗, µ). What are the optimal dual variables λ⃗⋆, µ⋆?

Solution: We have

g(λ⃗, µ) = min
x⃗

L(x⃗, λ⃗, µ) = −µc +
n∑

i=1
min
xi≥0

(αi log(1/xi) + (µ − λi)xi) (107)

= −µc +
n∑

i=1

(αi log((µ − λi)/αi) + αi) , µ − λi > 0

−∞, µ − λi ≤ 0
(108)

=

−µc +
∑n

i=1 (αi log((µ − λi)/αi) + αi) , ∀i : µ − λi > 0

−∞, ∃i : µ − λi ≤ 0
(109)

The minimum with respect to xi in the first expression is attained at the unique point xi = αi/(µ − λi),
which we obtain by verifying that the expression is convex with respect to x⃗ and setting the gradient to 0.
The dual is thus d⋆

r = maxλ⃗≥0⃗
µ≥0

g(λ⃗, µ). To solve for the optimal dual variables, we solve for λ⃗⋆ first and

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 16



EECS 127/227AT Homework 8 2024-03-19 18:48:28-07:00

then µ⋆. For every choice of µ, it is optimal to pick λ⃗⋆ = 0⃗ so as to increase the quantity in the logarithm
(because λ⃗ ≥ 0⃗). Setting λ⃗⋆ = 0⃗, taking the gradient of g(⃗0, µ) with respect to µ, and setting it to 0, we
obtain the optimal

µ⋆ =
∑n

i=1 αi

c
= α

c
. (110)

(e) Show that strong duality holds for the relaxed problem, so p⋆
r = d⋆

r .

Solution: We want to apply Slater’s condition. We can verify that the objective and constraint functions
are convex by taking the Hessian of each and verifying that they are positive semidefinite. For a strictly
feasible point, we need to find an x⃗ ∈ Rn such that each xi > 0 and

∑n
i=1 xi < c. There are many such x⃗,

but one way to find them is to suppose that all xi are the same, say χ, and find χ such that nχ < c. This is
achieved at χ = c

2n , so x⃗ = c
2n 1⃗. Thus Slater’s condition holds and strong duality holds.

The only inequality constraints are affine constraints, and hence by refined Slater’s condition, strong duality
should hold (no strictly feasible point is necessary since there are no non-affine inequalities).

(f) From the λ⃗⋆, µ⋆ obtained in the previous part, how do we obtain the optimal primal variable x⃗⋆? What is
the optimal objective function value p⋆

r? Finally, what is p⋆?

Solution: We obtain the optimal primal solution as

x⋆
i = αi

µ⋆
= cαi

α
, i = 1, . . . , n. (111)

The expression for the optimal objective value follows by substituting this optimal solution back into the
objective:

p⋆
r =

n∑
i=1

−αi log
(cαi

α

)
(112)

=
n∑

i=1
−

(
αi log

( c

α

)
+ αi log(αi)

)
(113)

= −α log
( c

α

)
−

n∑
i=1

αi log(αi) (114)

p⋆ = −p⋆
min (115)

= −p⋆
r (116)

= α log
( c

α

)
+

n∑
i=1

αi log(αi). (117)
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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