
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 9

Self grades are due at 11 PM on April 5, 2024.

1. Optimizing Over Multiple Variables

In this exercise, we consider several problems in which we optimize over two variables, ~x ∈ Rn and ~y ∈ Rm,
and a general (possibly nonconvex) objective function, F0(~x, ~y). Suppose also that ~x and ~y are constrained to
different feasible sets X and Y , respectively, which may or may not be convex.

(a) Show that
min
~x∈X

min
~y∈Y

F0(~x, ~y) = min
~y∈Y

min
~x∈X

F0(~x, ~y), (1)

i.e., if we minimize over both ~x and ~y, then we can exchange the minimization order without altering the
optimal value.

Solution: We first consider the quantity min~y∈Y F0(~x, ~y), which can be viewed as a function of ~x. We can
write

F0(~x, ~y) ≥ min
~y∈Y

F0(~x, ~y) (2)

≥ min
~x∈X

min
~y∈Y

F0(~x, ~y) (3)

where both lines follow from the definition of a minimum. The inequality above holds for every ~x ∈ X , so
it holds for the value ~x that minimizes this quantity, i.e.,

min
~x∈X

F0(~x, ~y) ≥ min
~x∈X

min
~y∈Y

F0(~x, ~y). (4)

This inequality also holds for every ~y ∈ Y , so

min
~y∈Y

min
~x∈X

F0(~x, ~y) ≥ min
~x∈X

min
~y∈Y

F0(~x, ~y). (5)

By symmetry, we can reverse our treatment of ~x and ~y and arrive at the reversed inequality

min
~x∈X

min
~y∈Y

F0(~x, ~y) ≥ min
~y∈Y

min
~x∈X

F0(~x, ~y). (6)

Since both (5) and (6) must hold, the expressions must be equal, as desired.

(b) Show that p? ≥ d?, where

p? .= min
~x∈X

max
~y∈Y

F0(~x, ~y) (7)

d? .= max
~y∈Y

min
~x∈X

F0(~x, ~y). (8)

This statement is referred to as the min-max theorem.

Solution: By the definitions of minimization and maximization, we have that

L(~y) .= min
~x′

F0(~x′, ~y) ≤ F0(~x, ~y) ≤ U(~x) .= max
~y′

F0(~x, ~y′) (9)

1



EECS 127/227AT Homework 9 2024-03-22 08:04:21-07:00

for every ~x ∈ X and ~y ∈ Y , or more simply,

L(~y) ≤ U(~x). (10)

Since this inequality holds for all ~x ∈ X , it holds for the value of ~x that minimizes U(~x), and thus

p? = min
~x∈X

U(~x) ≥ L(~y). (11)

Similarly, since the above holds for all ~y ∈ Y , it holds for the value of ~y that maximizes L(~y), and thus

p? ≥ max
~y∈Y

L(~y) = d? (12)

as desired.
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2. Visualizing the Dual Problem

Download the Jupyter notebook dual_visualize.ipynb; complete the code where designated and answer the
questions given in the space provided. (If you prefer, for questions that do not involve writing code, you can write
solutions on separate paper or LATEX PDF, just make sure to correctly mark the relevant pages when uploading
to Gradescope.)
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3. Duality

Consider the function
f(~x) = ~x>A~x − 2~b>~x. (13)

First, we consider the unconstrained optimization problem

p? = min
~x∈Rn

f(~x) = min
~x∈Rn

~x>A~x − 2~b>~x (14)

for a real n × n symmetric matrix A ∈ Sn and ~b ∈ Rn. If the problem is unbounded below, then we say
p? = −∞. Let ~x? denote the minimizing argument of the optimization problem.

(a) Suppose A � 0 (positive semidefinite) and~b ∈ R(A). Let rank(A) = n. Find p?.

HINT: What does A � 0 tell you about the function f? How can you leverage the rank of A to compute
p??

Solution: If rank(A) = n, then A � 0, and therefore the objective is strictly convex. Setting the gradient
to 0 we obtain,

∇~xf(~x) = 2A~x − 2~b = 0 (15)

=⇒ A~x = ~b (16)

=⇒ ~x? = A−1~b (17)

Where in the last step, we used that fact that a full rank square matrix is invertible. Plugging this back into
our objective function we get,

f(~x?) = (~b>(A−1)>)A(A−1~b) − 2~b>(A−1~b) (18)

= ~b>(A>)−1���
AA−1~b − 2~b>A−1~b (19)

= ~b>A−1~b − 2~b>A−1~b (20)

p? = −~b>A−1~b (21)

(b) Suppose A � 0 (positive semidefinite) and~b ∈ R(A) as before. Let A be rank-deficient, i.e., rank(A) =
r < n. Let A have the compact/thin and full SVD as follows, with diagonal positive definite Λr ∈ Rr×r:

A = UrΛrU>
r =

[
Ur U1

] [
Λr 0
0 0

] [
U>

r

U>
1

]
. (22)

Show that the minimizer ~x? of the optimization problem (14) is not unique by finding a general form for
the family of solutions for ~x? in terms of Ur, U1, Λr,~b.

HINT: As before, A � 0 gives you some information about the objective function f . Can you use this
information along with the fact that b ∈ R(A) to obtain a general form for the minimizers of f? Use the
fact that any vector ~x ∈ Rn can be written as ~x = Ur~α + U1~β for unique ~α, ~β.

Solution: Since A � 0, f(~x) is convex and we can attempt to find the minimizer by setting the gradient to
zero. Doing this we obtain,

A~x = b, (23)

as in the part (a) of this problem.
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However, now this equation has infinite solutions since ~b lies in the range of A and A is rank-deficient.
Indeed we can add any vector from the (non-trivial) nullspace of A to any particular solution ~x0 of Equa-
tion (23) and get another solution.
By the Fundamental Theorem of Linear Algebra we have,

~x = Ur~α + U1~β (24)
~b = Ur~γ, (25)

where we used the fact that~b ∈ R(A). Using this we obtain,

UrΛrU>
r (Ur~α + U1~β) = Ur~γ (26)

Since the columns of U1 and Ur are orthogonal to each other and because U>
r Ur = I, Λr is invertible we

have,

UrΛrU>
r Ur~α = Ur~γ (27)

=⇒ ~α = Λ−1
r ~γ (28)

= Λ−1
r U>

r
~b. (29)

Thus any solution to Equation (23) and hence a minimizer to the optimization problem (14) can be written
as,

~x? = UrΛ−1
r U>

r
~b + U1~β. (30)

(c) If A � 0 (A not positive semi-definite) show that p? = −∞ by finding ~v such that f(α~v) → −∞ as
α → ∞.

HINT: A � 0 means that there exists ~v such that ~v>A~v < 0.
Solution: Since A � 0 there exists an eigenvalue, eigenvector pair (µ,~v) such that

~v>A~v = µ < 0. (31)

Assuming without loss of generality that −2~b>~v ≤ 0 (If it is positive then multiply ~v by −1) we can take
~x = α~v to obtain,

f(~x) = f(α~v) = α2~v>A~v + α(−2~b>~v), (32)

which goes to −∞ as α goes to ∞ since ~v>A~v < 0 and −2~b>~v ≤ 0.

(d) Suppose A � 0 (positive semidefinite) and~b /∈ R(A). Find p?. Justify your answer mathematically.

HINT: From FTLA, we know that Rn = R
(
A>)

⊕ N (A). Therefore, ~b = ~v1 + ~v2 where ~v1 ∈ R(A) =
R

(
A>)

and ~v2 ∈ N (A).
Solution: First, note that since A is symmetric, we have R(A) = R(A>). We have ~b = ~v1 + ~v2 with
~v1 ∈ R(A) = R(A>) and ~v2 ∈ N (A) as Rn = R(A) ⊕ N (A) from the Fundamental Theorem of Linear
Algebra. We cannot have ~v2 = 0 as otherwise we’d get~b = ~v1 ∈ R(A) which is a contradiction. Now, let
~v = ~v2. We get from this:

f(α~v) = α2~v>A~v − 2α(~v1 + ~v2)>~v2 = 0 − 2α ‖~v2‖2 (33)
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where we used the fact that ~v2 ∈ N (A) and ~v1 ∈ R(A). As α → ∞, we get that f(α~v) → −∞ from
which we conclude that p? = −∞.

For parts (e) and (f), consider real n × n symmetric matrix A ∈ Sn and ~b ∈ Rn. Let rank(A) = r, where
0 ≤ r ≤ n. Now we consider the constrained optimization problem

p? = min
~x∈Rn

~x>A~x − 2~b>~x (34)

s.t. ~x>~x ≥ 1.

(e) Write the Lagrangian L(~x, λ), where λ is the dual variable corresponding to the inequality constraint.

Solution:

L(~x, λ) = ~x>A~x − 2~b>~x + λ(1 − ~x>~x) (35)

= ~x>A~x − ~x>λ~x − 2~b>~x + λ (36)

= ~x>(A − λI)~x − 2~b>~x + λ (37)

(f) For any matrix C ∈ Rn×n with rank(C) = r ≤ n and compact SVD

C = UrΛrV >
r , (38)

we define the pseudoinverse as
C† = VrΛ−1

r U>
r . (39)

We use the “dagger” operator to represent this. If ~d lies in the range of C, then a solution to the equation
C~x = ~d, can be written as ~x = C† ~d, even when C is not full rank. Show that the dual problem to the
primal problem (34) can be written as,

d? = max
λ≥0

A−λI�0
~b∈R(A−λI)

−~b > (A − λI)†~b + λ. (40)

HINT: To show this, first argue that when the constraints are not satisfied min~x L(~x, λ) = −∞. Then show
that when the constraints are satisfied, min~x L(~x, λ) = −~b > (A − λI)†~b + λ.

HINT: Compute g(λ) and explore its behavior under the constraints.

Solution:

g(λ) = min
~x

L(~x, λ) = min
~x

~x>(A − λI)~x − 2~b>~x + λ (41)

Drawing from parts (c) and (d), we can see that if A − λI � 0 or if A − λI � 0,~b /∈ R(A − λI), then we
can choose ~x to drive the Lagrangian to −∞. If the constraints are satisfied, however, then we can proceed
like in part (b) by taking the gradient:

∇~xL = 2(A − λI)~x − 2~b = 0 (42)

(A − λI)~x = ~b (43)

~x? = (A − λI)†~b (44)
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where in the last step, we used the fact that the PSD contraint on A − λI is satisfied and~b lies in the range
of A − λI , so we can use the pseudoinverse and the gradient-zero point is indeed the minimum. Plugging
this back into the Lagrangian, we get:

L(~x?, λ) = ~b>((A − λI)†)>(A − λI)(A − λI)†~b − 2~b>(A − λI)†~b + λ (45)

= ~b>(A − λI)†(A − λI)(A − λI)†~b − 2~b>(A − λI)†~b + λ (46)

= ~b>(A − λI)†~b − 2~b>(A − λI)†~b + λ (47)

= −~b>(A − λI)†~b + λ (48)

where we used the fact that (A − λI)† is symmetric and by properties of pseudo inverse,

(A − λI)†(A − λI)(A − λI)† = (A − λI)†. (49)

Now, we have a full expression for our dual function:

g(λ) =

−b>(A − λI)†b + λ if A − λI � 0, b ∈ R(A − λI)

−∞ else
(50)

The dual problem follows, as it is just a maximization of the dual function:

d? = max
λ≥0

g(λ) (51)
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4. Sensitivity and Dual Variables

In this problem, we explore the interpretation of dual variables as sensitivity parameters of the primal problem.
Recall the canonical convex primal problem

min
~x∈Rn

f0(~x) (52)

s.t. fi(~x) ≤ 0, i = 1, . . . , m (53)

hj(~x) = 0, j = 1, . . . , p (54)

where fi are convex for all i = 0, . . . , m and hj are affine for all j = 1, . . . , p.

For ~u = (u1, . . . , um)> ∈ Rm and ~v = (v1, . . . , vp)> ∈ Rp, we consider the perturbed problem

p?(~u,~v) = min
~x∈Rn

f0(~x) (55)

s.t. fi(~x) ≤ ui, i = 1, . . . , m (56)

hj(~x) = vj , j = 1, . . . , p (57)

In other words, p?(~u,~v) is a function of ~u and ~v that gives the optimal value for the perturbed problem (if it is
feasible). If the problem is infeasible (i.e. no points exist that satisfy the constraints), we say that p?(~u,~v) = +∞.
Note that p?(~0,~0) is the value of the original problem.

(a) Prove that p?(~u,~v) is jointly convex¹ in (~u ∈ Rm, ~v ∈ Rp).
HINT: Let

D .= {(~x ∈ Rn, ~u ∈ Rm, ~v ∈ Rp) | fi(~x) ≤ ui ∀i, hj(~x) = vj ∀j}, (58)

which is the set of all triples (~x, ~u,~v) such that ~x is a feasible point for the perturbed problem with the
perturbations (~u,~v). Show that D is convex. Now define F (~x, ~u,~v) to be a function that is equal to f0(~x)
on D and +∞ otherwise. Prove that F (~x, ~u,~v) is jointly convex in (~x, ~u,~v), and then observe that

p?(~u,~v) = min
~x

F (~x, ~u,~v). (59)

From here, to show that p?(~u,~v) is jointly convex in (~u,~v), you may prove and use the following lemma:

Let S1, S2 be convex sets with a function f : S1 × S2 → R which is jointly convex in both arguments.
Define g(~y) = min~x∈S1 f(~x, ~y). Then g(~y) is convex in ~y ∈ S2.

Solution: First, we show that D is convex. Indeed, let (~x1, ~u1, ~v1), (~x2, ~u2, ~v2) ∈ D and λ ∈ [0, 1]. We
want to show that

λ(~x1, ~u1, ~v1) + (1 − λ)(~x2, ~u2, ~v2) = (λ~x1 + (1 − λ)~x2, λ~u1 + (1 − λ)~u2, λ~v1 + (1 − λ)~v2) ∈ D. (60)

Indeed, for each i ∈ {1, . . . , m} and j ∈ {1, . . . , p}, we have

fi(λ~x1 + (1 − λ)~x2) ≤ λfi(~x1) + (1 − λ)fi(~x2) (61)

≤ λ(~u1)i + (1 − λ)(~u2)i (62)

= (λ~u1 + (1 − λ)~u2)i. (63)

hj(λ~x1 + (1 − λ)~x2) = λhj(~x1) + (1 − λ)hj(~x2) (64)

¹Recall that a function f : A × B → R is jointly convex in (~a ∈ A, ~b ∈ B) if A × B is convex, and for all θ ∈ [0, 1], and for all
~a1,~a2 ∈ A, ~b1,~b2 ∈ B, we have that f(θ~a1 + (1 − θ)~a2, θ~b1 + (1 − θ)~b2) ≤ θf(~a1,~b1) + (1 − θ)f(~a2,~b2).
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= λ(~v1)j + (1 − λ)(~v2)j (65)

= (λ~v1 + (1 − λ)~v2)j . (66)

This shows that D is convex.

Nowwe show that F is convex. Let (~x1, ~u1, ~v1), (~x2, ~u2, ~v2) ∈ Rn×Rm×Rp and λ ∈ (0, 1) (the endpoints
λ ∈ {0, 1} can be dealt with separately). Then there are two cases:

(i) If (~x1, ~u1, ~v1) /∈ D or (~x2, ~u2, ~v2) /∈ D, thenwemust have eitherF (~x1, ~u1, ~v1) = ∞ orF (~x2, ~u2, ~v2) =
∞. Thus we must have

F (λ(~x1, ~u1, ~v1) + (1 − λ)(~x2, ~u2, ~v2)) ≤ λF (~x1, ~u1, ~v1) + (1 − λ)F (~x2, ~u2, ~v2) = ∞. (67)

(ii) If both (~x1, ~u1, ~v1) ∈ D and (~x2, ~u2, ~v2) ∈ D, then because D is convex, we have λ(~x1, ~u1, ~v1)+(1−
λ)(~x2, ~u2, ~v2) ∈ D. Thus we have

F (λ(~x1, ~u1, ~v1) + (1 − λ)(~x2, ~u2, ~v2)) = f0(λ~x1 + (1 − λ)~x2) (68)

≤ λf0(~x1) + (1 − λ)f0(~x2) (69)

= λF (~x1, ~u1, ~v1) + (1 − λ)F (~x2, ~u2, ~v2). (70)

Thus in every case we have

F (λ(~x1, ~u1, ~v1) + (1 − λ)(~x2, ~u2, ~v2)) ≤ λF (~x1, ~u1, ~v1) + (1 − λ)F (~x2, ~u2, ~v2), (71)

so that F is convex.

Now by definition we have

p?(~u,~v) = min
~x∈Rn

(~x,~u,~v)∈D

f0(~x) = min
~x∈Rn

(~x,~u,~v)∈D

F (~x, ~u,~v) = min
~x∈Rn

F (~x, ~u,~v), (72)

because F takes values +∞ outside of D, so the minimum will never be achieved outside of D.

To show that p?(~u,~v) is convex, we prove the lemma in the hint. Let S1, S2 be convex sets with a function
f : S1 × S2 → R which is jointly convex in both arguments. Define g(~y) = min~x∈S1 f(~x, ~y). Then we
show g is convex in ~y ∈ S2. Indeed, let ~y1, ~y2 ∈ S2 and λ ∈ [0, 1]. Then by definition of the pointwise
minimum, we have

g(λ~y1 + (1 − λ)~y2) ≤ f(~x, λ~y1 + (1 − λ)~y2), ∀~x ∈ S1. (73)

Because S1 is a convex set, it also holds if we write ~x as a convex combination of points in S1, i.e.,

g(λ~y1 + (1 − λ)~y2) ≤ f(λ~x1 + (1 − λ)~x2, λ~y1 + (1 − λ)~y2) (74)

= f(λ(~x1, ~y1) + (1 − λ)(~x2, ~y2)), ∀~x1, ~x2 ∈ S1. (75)

Now we use the convexity of f to obtain

g(λ~y1 + (1 − λ)~y2) ≤ λf(~x1, ~y1) + (1 − λ)f(~x2, ~y2), ∀~x1, ~x2 ∈ S1. (76)

Since this holds for all ~x1 and ~x2, it must hold for the minimizing ~x1, ~x2 (which, to be clear, are chosen as
a function of ~y1, ~y2), so this gives

g(λ~y1 + (1 − λ)~y2) ≤ min
~x1,~x2∈S1

[λf(~x1, ~y1) + (1 − λ)f(~x2, ~y2)] (77)
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= λ min
~x1∈S1

f(~x1, ~y1) + (1 − λ) min
~x2∈S1

f(~x2, ~y2) (78)

= λg(~y1) + (1 − λ)g(~y2). (79)

Thus g is convex in ~y ∈ S2.
Applying it to this case, we observe that

p?(~u,~v) = min
~x∈Rn

F (~x, ~u,~v) (80)

and the latter function is jointly convex in all three of its input variables, so p?(~u,~v) is jointly convex in
(~u,~v).

(b) Assume that strong duality holds, and that the dual optimum is attained, for the unperturbed primal problem
(52). Let (~λ?, ~σ?) be the optimal dual variables for the dual of (52). Show that for any point ~z that is feasible
for the perturbed problem (55), we have

f0(~z) ≥ p?(~0,~0) − ~u>~λ? − ~v>~σ? (81)

HINT: Let L and g be the Lagrangian and dual function, respectively, of the unperturbed primal problem
(52). Use strong duality to relate p?(~0,~0) to g(~λ?, ~σ?). Upper-bound the value of g(~λ?, ~σ?) by the value
of L(~z, ~λ?, ~σ?). Then, noting that ~z is feasible for the perturbed problem (55), apply bounds on fi(~z) and
hj(~z) to bound L(~z, ~λ?, ~σ?).
Solution: We have by strong duality and the bounds in (55) on fi, hj that

p?(~0,~0) = d? (82)

= g(~λ?, ~σ?) (83)

= min
~x∈Rn

L(~x,~λ?, ~σ?) (84)

≤ L(~z, ~λ?, ~σ?) (85)

= f0(~z) +
m∑

i=1
λ?

i fi(~z) +
p∑

j=1
σ?

j hj(~z) (86)

≤ f0(~z) +
m∑

i=1
λ?

i ui +
p∑

j=1
σ?

j vj (87)

= f0(~z) + ~u>~λ? + ~v>~σ?. (88)

Rearranging obtains the desired equality.

(c) Using the result of part (b), show that for all ~u,~v, we have

p?(~u,~v) ≥ p?(~0,~0) − ~u>~λ? − ~v>~σ?. (89)

Solution: LetF(~u,~v) ⊆ Rn be the feasible set for the perturbed problem (55), so thatmin~z∈F(~u,~v) f0(~z) =
p?(~u,~v). From part (b), for any ~z feasible for (55), we have

f0(~z) ≥ p?(~0,~0) − ~u>~λ? − ~v>~σ?. (90)

We take minimums over ~z ∈ F(~u,~v) on both sides, and note that the right-hand side does not depend on
~z, to obtain

p?(~u,~v) = min
~z∈F(~u,~v)

f0(~z) ≥ min
~z∈F(~u,~v)

[p?(~0,~0) − ~u>~λ? − ~v>~σ?] = p?(~0,~0) − ~u>~λ? − ~v>~σ?, (91)

as desired.
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(d) Suppose we only have 1 equality and 1 inequality constraint (that is u, v are scalars). For each (u, v),
exactly one of the following three cases must apply: either we must have p?(u, v) > p?(0, 0), we must
have p?(u, v) < p?(0, 0), or it is impossible to conclude which one is greater. For each of the following
situations, assume that |u| ≈ |v| ≈ 1, the small Lagrange multiplier has absolute value ≈ 1, the large
Lagrange multiplier has absolute value ≈ 10, and argue which case applies.

i. λ? is large (as compared with σ?) and u < 0.
ii. λ? is large (as compared with σ?) and u > 0.
iii. σ? is large (as compared with λ?) and positive and v < 0.
iv. σ? is large (as compared with λ?) and negative and v > 0.

HINT: Use the bound you computed in part (c).

Note that we can think of u and v as variables we choose — by examining how the solution to our original
primal problem changes, we can describe how “sensitive” our problem is to its different constraints!

Solution: For the scalar case, we can restate the relationship proved in part (b) as

p?(u, v) ≥ p?(0, 0) − λ?u − σ?v. (92)

For u = v = 0, this bound is (trivially) tight: it just says that p?(0, 0) = p?(0, 0). This means that when we
increase the value of u and v incrementally, we can use this bound to determine whether p?(u, v) increases
or decreases as compared with p?(0, 0).

i. Since λ? is large and u is negative, we know that −λ?u ≥ 0, so our lower bound on p?(u, v) increases;
thus, p?(u, v) must increase accordingly.

ii. In this case, −λ?u ≤ 0, so the lower bound on p?(u, v) decreases; this doesn’t allow us to say anything
about whether p?(u, v) increases, decreases, or remains the same, since it could still obey this bound
for any of the three cases.

iii. As in case 4.((d))i, −σ?v ≥ 0, so p?(u, v) increases.

iv. As in case 4.((d))iii, −σ?v ≥ 0, so p?(u, v) increases.
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5. KKT with Circles

Consider the problem

min
~x∈R2

x2
1 + x2

2 (93)

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 2 (94)

(x1 − 1)2 + (x2 + 1)2 ≤ 2 (95)

where x =
[
x1 x2

]>
∈ R2.

(a) Sketch the feasible region and the level sets of the objective function. Find the optimal point ~x∗ and the
optimal value p∗.

Solution:

The feasible region is given by the yellow area in the graphic above. The optimal solution is the closest
point to the origin inside the feasible region. Since the origin is an element of this feasible region, we have

~x∗ =
[
0 0

]>
, and p∗ = 0.

(b) Does strong duality hold?

Solution: The problem is convex (i.e., the objective function and the feasible set are both convex). The

feasible set contains interior points (e.g., ~x =
[
1 0

]>
), so Slater’s condition is satisfied and thus strong

duality holds.

(c) Write the KKT conditions for this optimization problem. Do there exist Lagrange multipliers λ∗
1 and λ∗

2

that prove the optimality of ~x∗?

Solution: The Lagrangian is given by

L(x, λ) = x2
1 + x2

2 + λ1[(x1 − 1)2 + (x2 − 1)2 − 2] + λ2[(x1 − 1)2 + (x2 + 1)2 − 2]. (96)

We can write the KKT conditions as follows:
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i. Stationarity:
x∗

1 + (λ∗
1 + λ∗

2)(x∗
1 − 1) = 0, (97)

x∗
2 + λ∗

1(x∗
2 − 1) + λ∗

2(x∗
2 + 1) = 0. (98)

ii. Primal feasibility:
(x∗

1 − 1)2 + (x∗
2 − 1)2 − 2 ≤ 0, (99)

(x∗
1 − 1)2 + (x∗

2 + 1)2 − 2 ≤ 0. (100)

iii. Dual feasibility:
λ∗

1 ≥ 0, λ∗
2 ≥ 0. (101)

iv. Complementary slackness:
λ∗

1[(x∗
1 − 1)2 + (x∗

2 − 1)2 − 2] = 0, (102)

λ∗
2[(x∗

1 − 1)2 + (x∗
2 + 1)2 − 2] = 0. (103)

From the stationarity conditions (along with dual feasibility), we can conclude that

x∗
1 = 0, x∗

2 = 0 ⇒ λ∗
1 = λ∗

2 = 0. (104)

Since in the previous part we already show this is a convex problem with differentiable objective and con-
straint functions, and that Slater’s condition holds, we know KKT conditions provide necessary and suf-
ficient conditions for optimality. Since these values for ~x∗ and ~λ∗ satisfy the KKT conditions and strong
duality holds, we can conclude that ~x∗ is primal optimal (and, additionally, that ~λ∗ is dual optimal).
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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