
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 10

This homework is due at 11 PM on April 5, 2024.
Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers
(any handwritten answers should be scanned), as well as a printout of your completed Jupyter notebook(s).

1. Does Strong Duality Hold?

Consider

min
(x,y)∈D

e−x (1)

s.t. x2/y ≤ 0 (2)

where D = {(x, y) | y > 0}.

(a) Prove the problem is convex. Find the optimal value. HINT: To prove the constraint function is convex, you

will have to prove it is convex with respect to the vector
[
x y

]⊤
. Consider computing the Hessian of the

constraint function, its determinant and trace, and show that it is PSD by analyzing signs of its eigenvalues.

(b) Next, we will proceed to find an optimal solution and an optimal value for the dual problem. The Lagrangian
dual function g(λ), can be written as:

g(λ) = inf
(x,y)∈D

e−x + λ
x2

y
. (3)

Explain why g(λ) is lower bounded by 0 for λ ≥ 0. NOTE: Here we are not dualizing the constraint y > 0
that is in the definition of D — this is only dualizing the other constraint.

(c) Show that g(λ) = 0 for λ ≥ 0. HINT: To show that the infimum in (3) is 0, we want to show there exist
(x, y) such that both e−x and λ x2

y can get arbitrarily close to 0. HINT: Consider a sequence {xk} going

to +∞ and a sequence {yk} also going to +∞ such that limk→∞
x2

k

yk
= 0. Simply put, we want to drive x

to infinity in order to drive e−x to 0, while having y grow faster than x2, so that the second term also goes
to 0.

(d) Now, write the dual problem and find an optimal solution λ∗ and an optimal value d∗ for the dual problem
using the results above. What is the duality gap?

(e) Does Slater’s Condition hold for this problem? Does Strong Duality hold?
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2. About General Optimization

In this exercise, we test your understanding of the general framework of optimization and its language. We
consider an optimization problem in standard form:

p⋆ = min
x⃗∈Rn

f0(x⃗) : fi(x⃗) ≤ 0, i = 1, . . . , m. (4)

In the following we denote by X the feasible set. Note that the feasible set is a subset of Rn that satisfies the
inequalities fi(x⃗) ≤ 0, i.e X = {x⃗ ∈ Rn | fi(x⃗) ≤ 0, i = 1, . . . , m}. We make no assumption about the
convexity of f0(x⃗) and fi(x⃗), i = 1, . . . , m. For the following statements, answer whether the statement is true
or false and provide a proof or counter-example.

(a) A general optimization problem can be expressed as one with a linear objective.

(b) A general optimization problem can be expressed as an unconstrained problem with a different objective
function which could possibly take a value of ∞ for some values of x⃗.

(c) A general optimization problem can be recast as minimizing a linear objective subject to (possibly infinitely
many) linear constraints.

(d) If any of the constraint inequalities is strict (and therefore not active) at the optimum point, then we can
remove the constraint from the original problem and obtain the same optimum value.

Note: Review the definition of active constraints from the textbooks: Boyd Section 4.1.1 and El Ghaoui
Section 8.3.

Hint: Consider the problem

min
x

f(x) =

x2 if |x| ≤ 1,

−1 otherwise
(5)

such that |x| ≤ 1 (6)

(e) Now, suppose for the formulation in (4), f0(x⃗) is a convex function, X is a convex set, and all fi(x⃗) are
convex and continuous functions. Suppose p⋆ is achieved at a point x⃗⋆ where for some i, fi(x⃗⋆) < 0. Prove
that we can remove this inequality constraint and still retain the same optimum. In other words, show that

p⋆ = min
x⃗∈Rn

f0(x⃗) : fj(x⃗) ≤ 0, j = 1, . . . i − 1, i + 1, . . . , m. (7)

HINT: Argue by contradiction that if by removing the inequality constraint fi(x⃗) ≤ 0, we achieve a different
optimal for the problem in (4) at some point ⃗̄x that satisfies fi(⃗̄x) > 0, then there exists a point y⃗ between
⃗̄x and x⃗⋆ that is feasible to the original problem in (4). Use the continuity of fi and the intermediate value
theorem to come up with a y⃗ then show that it must be more optimal than x⃗⋆ in (4).
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3. Formulating Optimization problems

(a) Linear Separability. Let (x⃗i, yi) be given data points with x⃗i ∈ Rn and binary labels yi ∈ {−1, 1}. We
want to know if it is possible to find a hyperplane L = {x⃗ ∈ Rn : h⃗⊤x⃗ + b = 0} that separates all the
points with labels yi = −1 from all the points with labels yi = 1. In other words, can we find a vector
h⃗ ∈ Rn and a scalar b ∈ R such that h⃗⊤x⃗i + b ≤ 0 for all i such that yi = 1 and h⃗⊤x⃗i + b > 0 for all i

such that yi = −1. We want to cast this task as the following LP

p⋆ = min
h⃗,b,z

f0(⃗h, b, z) (8)

s.t. h⃗⊤x⃗i + b ≤ 0 ∀i : yi = 1 (9)

h⃗⊤x⃗i + b ≥ z ∀i : yi = −1 (10)

Complete this formulation by specifying a linear objective function f0. What does the solution p⋆ say
about the existence of the separating hyperplane?

(b) Chebyshev Center. Let P ⊂ Rn be a non-empty polyhedron defined as the intersection of m hyperplanes
P = {x⃗ : a⃗⊤

i x⃗ ≤ bi ∀i = 1, 2, . . . , m}. We define the Euclidean ball in Rn with radius R and center x⃗0

as the set B(x⃗0, R) = {x⃗ ∈ Rn : ∥x⃗ − x⃗0∥2 ≤ R}. We want to find a point x⃗0 ∈ P that is the center of
the largest Euclidean ball contained in P . Cast this problem as an LP.
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4. Water Filling

Consider the following problem:

minimize −
n∑

i=1
log(αi + xi) (11)

subject to x⃗ ≥ 0, 1⃗⊤x⃗ = c, (12)

where αi > 0 for each i = 1, . . . , n.

This problem arises in information theory, in allocating power to a set of n communication channels. The
variable xi represents the transmitter power allocated to the ith channel, and log(αi + xi) gives the capacity or
communication rate of the channel, so the problem is to allocate a total power of c to the channels, in order to
maximize the total communication rate.

(a) Verify that this is a convex optimization problem with differentiable objective and constraint functions.
Find the domain D of the objective function −

∑n
i=1 log(αi + xi) where it is well defined.

(b) Let λ⃗ ∈ Rn and ν ∈ R be the dual variables corresponding to the constraints xi ≥ 0, i = 1, . . . , n and
1⃗⊤x⃗ = c, respectively. Write a Lagrangian for the optimization problem based on these dual variables.

(c) Write the KKT conditions for the problem.

(d) Since our problem is a convex optimization problem with differential objective and constraint functions,
the KKT conditions provide sufficient conditions for optimality. Hence, we know that if we can find x⃗∗

and (λ⃗∗, ν∗) that satisfy the KKT conditions, then x⃗∗ will be a primal optimal point, (λ⃗∗, ν∗) will be dual
optimal. We therefore attempt to find solutions for the KKT conditions. As a first step, show how to
simplify the KKT conditions so that they are expressed in terms of only x⃗∗ and ν∗, i.e. show how λ⃗∗ can
be eliminated from these conditions.

(e) Solve for x∗
i , 1 ≤ i ≤ n, in terms of ν∗ from the simplified KKT conditions derived in the previous subpart.

Figure 1: This graphic depicts a solution to the water-filling problem. On the x-axis we have n communication channels and on the
y-axis we have the power in each channel. There is a base amount of noise Ni, which for us corresponds to αi. Water-filling tells us
that we should fill each channel until 1

ν∗ , adding 1
ν∗ − αi power (in this graphic written as Pi), unless αi already exceeds 1

ν∗ . One
algorithm for achieving this is to allot power to the channel with the least noise until it matches the channel with the second-least
noise. Then we fill both simultaneously until they match the level of the channel with the third-least noise. Repeating this process
until we run out of power to allot. This distribution of power is akin to filling connected basins with water, hence the name ’water
filling’. Figure taken from Elements of Information Theory by Cover and Thomas.
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5. Linear Programs

Consider the following linear program:

max
x1,x2∈R

2x1 + 3x2 (13)

s.t. x1 + 2x2 ≤ 8 (14)

x1 − x2 ≤ 2 (15)

x2 + x1 ≥ 2 (16)

x1 ≥ 0 (17)

x2 ≥ 0 (18)

(a) Sketch the feasible region of the linear program as well as the 5-, 10-, and 15-level sets of the objective
function.

HINT: Recall that for f : Rn 7→ R and α ∈ R, the α-level set of f is defined as {x⃗ ∈ Rn : f(x⃗) = α}.

(b) Express the linear program in the following form:

max
x⃗∈Rn

c⃗⊤x⃗ (19)

s.t. Ax⃗ ≤ b⃗ (20)

Specify the values of x⃗, c⃗, A, and b⃗.

(c) Express the linear program in the following form:

min
y⃗∈Rn

c⃗⊤y⃗ (21)

s.t. Ay⃗ = b⃗ (22)

y⃗ ≥ 0 (23)

Specify the values of y⃗, c⃗, A, and b⃗.

HINT: Consider adding additional slack variables to the optimization problem.

(d) List the extreme points or vertices of the feasible region of the linear program given by equations (13)–(18).

(e) Find the optimal value p⋆ and the optimal point x⃗⋆ = (x⋆
1, x⋆

2) of the linear program given by equations
(13)–(18).

HINT: Recall that for a linear program with a bounded feasible region, at least one optimal point is a vertex
of the feasible region.
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6


