
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 12

This homework is due at 11 PM on April 19, 2024.
Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers
(any handwritten answers should be scanned), as well as a printout of your completed Jupyter notebook(s).

1. Median Versus Mean

For a given vector ~v ∈ Rn, the mean can be found as the solution to the optimization problem

min
x∈R

∥∥~v − x~1
∥∥2

2 , (1)

where ~1 is the vector of ones in Rn. Similarly, the median (any value x such that there is an equal number of
values in ~v above or below x) can be found via

min
x∈R

∥∥~v − x~1
∥∥

1 . (2)

We consider a robust version of the mean problem (1):

min
x

max
~u : ‖~u‖∞≤λ

∥∥~v + ~u − x~1
∥∥2

2 , (3)

in which we assume that the components of ~v can be independently perturbed by a vector ~u whose magnitude is
bounded by a given number λ ≥ 0.

(a) Is the robust problem (3) convex? Justify your answer precisely, based on expression (3), and without
further manipulation.

(b) Show that problem (3) can be expressed as

min
x∈R

n∑
i=1

(|vi − x| + λ)2
. (4)

(c) Express the problem (4) as a QP. State precisely the variables, and constraints if any.

(d) Show that when λ is large, the solution set approaches that of the median problem (2). HINT: Given
variable a, constants b, c, where c � 1, and the optimization problem mina

1
c (b − a)2 + |b − a|. The

minimizer a∗ tends to minimize the second term only.

(e) It is often said that the median is a more robust notion of “middle” value than the mean, when noise is
present in ~v. Based on the previous part, justify this statement.
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2. Sphere Enclosure

Let Bi, i = 1, . . . , m, be m Euclidean balls in Rn, with centers ~xi, and radii ρi ≥ 0. We wish to find a ball B

with center ~c ∈ Rn of minimum radius r ≥ 0 that contains all the Bi, i = 1, . . . , m. Cast this problem as an
SOCP.
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3. LASSO vs. Ridge

Say that we have the data set {(~x(i), y(i))}i=1,...,n of samples ~x(i) ∈ Rd and values y(i) ∈ R.

Define X =
[
~x(1) . . . ~x(n)

]>
and y =

[
y(1) . . . y(n)

]>
.

For the sake of simplicity, assume that each feature of the data has mean 0 and variance 1 and the features are
uncorrelated, i.e. X>X = nI . Consider the linear least squares regression with regularization in the `1-norm,
also known as LASSO:

~w? = argmin
~w∈Rd

‖X ~w − ~y‖2
2 + λ ‖~w‖1 . (5)

This problem will compare `1-regularization with `2-regularization (ridge regression) to understand their simi-
larities and differences. We will do this by looking at the elements of ~w? in the solution to each problem.

(a) First, we decompose this optimization problem into d univariate optimization problems over each element
of ~w. Let X =

[
~x1 . . . ~xd

]
and recall that X>X = nI .

(b) If w?
i > 0, then what is the value of w?

i ? What is the condition on ~y>~xi for this to be possible? HINT:
Use the first order condition.

(c) If w?
i < 0, then what is the value of w?

i ? What is the condition on ~y>~xi for this to be possible?

(d) What can we conclude about w?
i if

∣∣~y>~xi

∣∣ ≤ λ

2 ? How does the value of λ impact the individual entries
w?

i ?

(e) Now consider the case of ridge regression, which uses the the `2 regularization λ ‖~w‖2
2.

~w? = argmin
~w∈Rd

‖X ~w − ~y‖2
2 + λ ‖~w‖2

2 . (6)

Write down the new condition for ~w?
i to be 0. How does this differ from the condition obtained in part (d)

and what does this suggest about LASSO?
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4. More Fun with Lasso and Ridge

Complete the Jupyter notebook ridge_vs_lasso.ipynb which demonstrates differences between ridge regres-
sion and LASSO.
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5. Connecting Ridge Regression, LASSO, and Constrained Least Squares

This question aims to help you develop an understanding of how a constraint in an optimization problem has
the same effect as a penalty term in the objective, and apply it to the context of regularized least squares. More
formally, let f : Rn → R be strictly convex and such that limt→∞ f(~xt) = ∞ for any sequence (~xt)∞

t=0 such
that limt→∞ ‖~xt‖2 = ∞. Let g : Rn → R+ be convex and take non-negative values. Further, suppose that there
exists ~x0 ∈ Rn such that g(~x0) = 0. For λ ≥ 0 and k ≥ 0, define the “penalty” and “constraint” programs

P (λ) .= argmin
~x

{f(~x) + λg(~x)} (7)

C(k) .= argmin
~x : g(~x)≤k

f(~x). (8)

We will show that for every λ there exists k such that P (λ) = C(k), and vice versa.

(a) Show that, for k ≥ 0 and λ ≥ 0, both P (λ) and C(k) have exactly one element, i.e., each problem has
exactly one optimal solution.

HINT: You may use without proof that P (λ) and C(k) have at least one element each (this is true from
assumptions but requires some analysis to show). Thus, you just need to show that there are not multiple
optimal solutions to each problem. For this, use strict convexity of the objectives.

(b) Prove that for all λ ≥ 0 there exists k ≥ 0 such that P (λ) = C(k).
HINT: Let ~x? ∈ P (λ) and show that ~x? ∈ C(k) for k = g(~x?). Use the fact, from part 5(a), that P (λ) and
C(k) have exactly one element.

(c) Prove that for all k > 0 there exists λ ≥ 0 such that P (λ) = C(k).
HINT: Prove that strong duality holds for the constraint problem, let ~x? ∈ C(k) and µ? be optimal primal
and dual variables for the constraint problem and show that ~x? ∈ P (λ) for λ = µ?.

Now we apply our findings to regularized least squares, in order to understand why LASSO promotes sparsity
more than ridge regression. Let A ∈ Rm×n have full column rank, and let ~y ∈ Rm. In the course, we have looked
at LASSO:

LASSO(λ) .= argmin
~x

{
‖A~x − ~y‖2

2 + λ ‖~x‖1

}
(9)

and ridge regression:
Ridge(λ) .= argmin

~w

{
‖A~x − ~y‖2

2 + λ ‖~x‖2
2

}
(10)

which add an `1 and `2 norm penalty to the least squares objective, respectively. The analogous constrant programs
are the `1- and `2-constrained least squares problems:

`1CLS(k) .= argmin
~x : ‖~x‖1≤k

‖A~x − ~y‖2
2 (11)

`2CLS(k) .= argmin
~x : ‖~x‖2

2≤k

‖A~x − ~y‖2
2 . (12)

(d) Show that the result from part 5(b) and part 5(c) can be used to show the equivalence of LASSOwith `1CLS
and the equivalence of ridge regression with `2CLS. Namely, for each pair of equivalent formulations, find
f and g, prove that f is strictly convex, prove that g is convex, and prove that there is an ~x0 such that
g(~x0) = 0.
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(e) Complete the Jupyter notebook ridge_lasso_constrained.ipynb, which will use this equivalence to
show geometrically why LASSO solutions tend to be sparse (i.e. have many zeros) while ridge regression
doesn’t, and attach a PDF printout of your answers.
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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