
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 13

This homework is due at 11 PM on April 26, 2024.
Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers
(any handwritten answers should be scanned), as well as a printout of your completed Jupyter notebook(s).

1. Newton’s Method, Coordinate Descent and Gradient Descent

In this question, we will compare three different optimization methods: Newton’s method, coordinate descent
and gradient descent. We will consider the simple set-up of unconstrained convex quadratic optimization; i.e we
will consider the following problem:

min
x⃗∈Rd

x⃗⊤Ax⃗ − 2⃗b⊤x⃗ + c (1)

where A ≻ 0 and b⃗ ∈ Rd.

(a) How many steps does Newton’s method take to converge to the optimal solution? Recall that the update
rule for Newton’s method is given by the equation:

x⃗t+1 = x⃗t − (∇2f(x⃗t))−1∇f(x⃗t). (2)

when optimizing a function f .

(b) Now, consider the simple two variable quadratic optimization problem for σ > 0:

min
x⃗∈R2

f(x⃗) = σx2
1 + x2

2. (3)

How many steps does coordinate descent take to converge on this problem? Assume that we start by
updating the variable x1 in the first step, x2 in step two and so on; therefore, we will update x1 and x2 in
odd and even iterations respectively:

(xt+1)1 =

argminx1 f(x1, (xt)2) for odd t

(xt)1 otherwise
and (xt+1)2 =

argminx2 f((xt)1, x2) for even t

(xt)2. otherwise
(4)

Here, (xt)2 represents x2 at time t and so on.

(c) We will now analyze the performance of coordinate descent on another quadratic optimization problem:

min
x⃗∈R2

f(x⃗) = σ(x1 + x2)2 + (x1 − x2)2. (5)

where we have, as before, σ > 0. Note that (0, 0) is the optimal solution to this problem. Now, starting
from the point x⃗0 = (1, 1), write how each coordinate of (x⃗t+1)i relates to (x⃗t)i for i = 1, 2. Use this
to show how the algorithm converges from the initial point (1, 1) to (0, 0). What happens when σ grows
large? HINT: First find the update rule for (x⃗t)1, i.e. keep (x⃗t)2 fixed and figure out how (x⃗t)1 changes
when t is odd. Then do the same for (x⃗t)2 when (x⃗t)1 is fixed for even t.

(d) Now, let f(x⃗) = 1
2 x⃗⊤Ax⃗+x⃗⊤b⃗+c where A is PD. When we run gradient descent on f(x⃗), the convergence

along each of the unit eigenvectors v⃗i of A is

|1 − η (λi{A})| (6)
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This can be derived similar to HW 8 Question 3e, which you may reference. Formally, in the current
setting, we have

(x⃗k − x⃗⋆) = (I − ηA)k(x⃗0 − x⃗⋆)

One way we can derive an “optimal” learning rate η⋆ is to minimize the largest rate of convergence:

η⋆ ∈ argmin
η∈R

max
i∈{1,...,n}

|1 − η (λi{A})| . (7)

One important property of η⋆ is that it makes the rates of convergence |1 − η (λi{A})| associated with the
largest and smallest singular values of A equal, i.e.,

|1 − η(λmax{A})| = |1 − η(λmin{A})|

Use this property to show that
η⋆ = 2

λmax{A} + λmin{A}
(8)

where λmin{A} = λn{A} is the nth largest singular value of A and similar for the maximum.

(e) Finally, for the objective function (5), write an equation relating x⃗t to x⃗0 if x⃗0 =
[

1
−1

]
. Assume for this

part that σ > 1 and reason about how quickly gradient descent converges when σ grows large. HINT: What
is the optimal step size for gradient descent, using the previous part? HINT: Also note that f is given by:

f(x⃗) = x⃗⊤Ax⃗ where A = 2
(

σ

[
1√
2

1√
2

] [
1√
2

1√
2

]
+
[

1√
2

− 1√
2

] [
1√
2 − 1√

2

])
. (9)
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2. Gradient Descent vs Newton Method

Run the Jupyter notebook gradient_vs_newton.ipynb which demonstrates differences between gradient
descent and Newton’s method.
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3. Modified SVM

Let C > 0. Suppose we have labeled data (x⃗i, yi) ∈ Rd ×{−1, 1} for i = 1, . . . , n. For each i, define z⃗i
.= yix⃗i.

Finally, define Z
.=
[
z⃗1, . . . , z⃗n

]⊤
∈ Rn×d.

Recall that the soft-margin support vector machine problem can be expressed using slack variables as

p⋆
1 = min

w⃗,s⃗

1
2 ∥w⃗∥2

2 + C

n∑
i=1

si (10)

s.t. si = max{0, 1 − z⃗⊤
i w⃗}, ∀i ∈ {1, . . . , n}.

In this problem we consider a modified SVM program with a squared penalty:

p⋆
2 = min

w⃗,s⃗

1
2 ∥w⃗∥2

2 + C

2

n∑
i=1

s2
i (11)

s.t. si = max{0, 1 − z⃗⊤
i w⃗}, ∀i ∈ {1, . . . , n}.

We will use another representation of this program, namely one with affine constraints:

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥2

2 + C

2 ∥s⃗∥2
2 (12)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗ − Zw⃗,

where the inequality constraints are componentwise (as usual).

(a) Choose the smallest class that problem (12) belongs to (LP/QP/SOCP/etc).

(b) Prove that strong duality holds for (12).

(c) Are the KKT conditions for problem (12) necessary, sufficient or both necessary and sufficient for global
optimality?

(d) Let α⃗ be the dual variable corresponding to the constraint s⃗ ≥ 0⃗. What is the dimension (i.e., number of
entries) of α⃗?

(e) Show that the Lagrangian L(w⃗, s⃗, α⃗, β⃗) of problem (12), where α⃗ is the dual variable corresponding to the
constraint s⃗ ≥ 0⃗, and β⃗ is the dual variable corresponding to the constraint s⃗ ≥ 1⃗ − Zw⃗, is equal to

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥2

2 + C

2 ∥s⃗∥2
2 − s⃗⊤(α⃗ + β⃗) − w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (13)

(f) Write the KKT conditions for problem (12). Show that if (w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) obey the KKT conditions for
problem (12), then

w⃗⋆ = Z⊤β⃗⋆ and s⃗⋆ = α⃗⋆ + β⃗⋆

C
. (14)

HINT: For the first order/stationarity condition on the Lagrangian you will need to consider partial
derivatives with respect to both w⃗ and s⃗.

(g) Compute the dual function of problem (12) as

g(α⃗, β⃗) .= L(w⃗⋆(α⃗, β⃗), s⃗⋆(α⃗, β⃗), α⃗, β⃗) (15)
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where from the previous part we have that

w⃗⋆(α⃗, β⃗) = Z⊤β⃗ and s⃗⋆(α⃗, β⃗) = α⃗ + β⃗

C
. (16)

Your final expression for g(α⃗, β⃗) should not contain any maximizations, minimizations or terms including
w⃗, s⃗, w⃗⋆, or s⃗⋆. It should only contain α⃗, β⃗, C, Z, and numerical constants.

(h) Let α⃗⋆ and β⃗⋆ be optimal dual variables that solve the problem

d⋆ .= max
α⃗,β⃗≥0⃗

g(α⃗, β⃗). (17)

It turns out that α⃗⋆ can also be obtained by solving the quadratic program:

min
α⃗

∥∥∥α⃗ + β⃗⋆
∥∥∥2

2
(18)

s.t. α⃗ ≥ 0⃗.

Solve this quadratic program (18) directly and find α⃗⋆.

HINT: The duality or KKT approaches are not recommended. Consider α⃗ =
[
α1 · · · αn

]⊤
, and use the

components of α⃗ to decompose the problem into n separate scalar problems. Solve each one by checking
critical points; that is, points where the gradient is 0, the boundary of the feasible set, and ±∞.

(i) Let β⋆ be a solution to the dual problem. Characterize the pairs (x⃗i, yi) which are “support vectors”, i.e.,
contribute to the optimal weight vector w⃗⋆, in terms of β⋆.
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4. Ridge Regression Classifier Vs. SVM

In this problem, we explore Ridge Regression as a classifier, and compare it to SVM. Recall Ridge Regression
solves the problem

min
w⃗

∥Xw⃗ − y⃗∥2
2 + λ ∥w⃗∥2

2 , (19)

where X ∈ Rm×n, and y⃗ ∈ Rn

(a) Ridge Regression as is solves a regression problem. Given data X ∈ Rm×n and labels y⃗ ∈ {−1, 1}m,
explain how we might be able to train a Ridge Regression model and use it to classify a test point.

(b) Complete the accompanying Jupyter notebook to compare Ridge Regression and SVM.
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5. Wasserstein distance between distributions

The Wasserstein distance is a measure of distance between probability distributions. The Wasserstein distance
can roughly be thought of as the cost of turning one distribution to another distribution by moving probability
mass around from one location to another. It is also sometimes called the earth-mover distance, because it may
be visualized as the cost of moving a pile of dirt from one configuration to another.

Figure 1: Visualization of µ histogram on left and ν histogram on right.

Let n ∈ N. We define two discrete probability distributions µ⃗ = (µ1, · · · , µn) and ν⃗ = (ν1, · · · , νn); that is,
µi, νi ≥ 0 and

∑
i µi =

∑
i νi = 1.

We define C ∈ Rn×n to be a cost matrix where cij ≥ 0 is the cost of transporting one unit of probability mass
from location i ∈ {1, · · · , n} to location j ∈ {1, · · · , n}. We define a matrix M ∈ Rn×n where mij ≥ 0
denotes the quantity of probability mass to be moved from location i to location j. In summary, if we move mij

units of probability mass from location i to location j, we incur cost cijmij .

In addition, the M matrix satisfies the following conditions. Row i of M indicates where all the probability mass
in location i in the µ⃗ distribution ends up. Hence, the sum of all the entries in row i must equal µi. Similarly,
column j indicates where all the probability mass in location j in the ν⃗ distribution came from. Hence, the sum
of all the entries in column j must equal νj . We can summarize these conditions in math:

M 1⃗ = µ⃗ (20)

M⊤1⃗ = ν⃗, (21)

where 1⃗ is a vector of 1s.

(a) What is the total cost of transporting the mass µ⃗ into ν⃗ by following the transportation plan dictated by the
matrix M?

(b) Given the cost matrix C, write the optimization problem of finding the transportation plan M⋆ with minimal
total cost. What type of optimization problem is it? (LP, QP, · · · ?).

Now, we apply the idea of Wasserstein distance to document similarity as illustrated in Fig. 2. Here, our
application is that we want to identify words in two different documents that are most similar. This is mostly
just a fun application, but may be of interest if you are trying to compare documents that are identical but
in different languages. Here we consider a contrived example.

Natural Language Processing techniques have standard tools for converting words into vectors and embed-
ding them in vector spaces, so that we can use machine learning and optimization tools on them. One such
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embedding is called word2vec. Assume we are provided with a word2vec embedding for the words in two
documents. The word travel cost cij between word i and word j is the Euclidean distance ∥xi − xj∥2

in the word embedding space. We can compute the similarity between two documents as the minimum
cumulative cost required to move all non-stop words from one document to the other.

Figure 2: An illustration of the Wasserstein distance. All non-stop words (bold) of both documents are embedded into a word
embedding space. The similarity between the two documents is the minimum cumulative distance that all words in document 1
need to travel to exactly match document 2.

(c) Using the text_kantorovich.ipynb Juypter notebook, implement the calculation of the Wasserstein
distance in the notebook and use the provided code to visualize the resulting matrix M . Comment on the
results.
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6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.
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