
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Homework 13

Self grades are due at 11 PM on May 3, 2024.
1. Newton’s Method, Coordinate Descent and Gradient Descent

In this question, we will compare three different optimization methods: Newton’s method, coordinate descent
and gradient descent. We will consider the simple set-up of unconstrained convex quadratic optimization; i.e we
will consider the following problem:

min
x⃗∈Rd

x⃗⊤Ax⃗ − 2⃗b⊤x⃗ + c (1)

where A ≻ 0 and b⃗ ∈ Rd.

(a) How many steps does Newton’s method take to converge to the optimal solution? Recall that the update
rule for Newton’s method is given by the equation:

x⃗t+1 = x⃗t − (∇2f(x⃗t))−1∇f(x⃗t). (2)

when optimizing a function f .

Solution: Newton’s method converges in a single step irrespective of the starting point. Let x⃗0 be any
starting point. We have:

∇2f(x⃗0) = 2A and ∇f(x⃗0) = 2(Ax⃗ − b⃗). (3)

Therefore, we have:
x⃗1 = x⃗0 − A−1(Ax⃗0 − b⃗) = A−1⃗b. (4)

Note that since this is an unconstrained convex quadratic optimization problem with A being full rank, we
can find the optimum point by setting the derivative of the function to 0. Therefore, we have:

∇f(x⃗∗) = 2(Ax⃗∗ − b⃗) = 0 =⇒ x⃗∗ = A−1⃗b. (5)

(b) Now, consider the simple two variable quadratic optimization problem for σ > 0:

min
x⃗∈R2

f(x⃗) = σx2
1 + x2

2. (6)

How many steps does coordinate descent take to converge on this problem? Assume that we start by
updating the variable x1 in the first step, x2 in step two and so on; therefore, we will update x1 and x2 in
odd and even iterations respectively:

(xt+1)1 =

argminx1 f(x1, (xt)2) for odd t

(xt)1 otherwise
and (xt+1)2 =

argminx2 f((xt)1, x2) for even t

(xt)2. otherwise
(7)

Here, (xt)2 represents x2 at time t and so on.

Solution: On this problem, coordinate descent converges in 2 steps starting from any initialization point.
Note that the optimal solution for each of the updates is 0, by setting the gradient to 0. Therefore, coordinate
descent converges in two steps, one to update x1 and the other to update x2.

1

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

(c) We will now analyze the performance of coordinate descent on another quadratic optimization problem:

min
x⃗∈R2

f(x⃗) = σ(x1 + x2)2 + (x1 − x2)2. (8)

where we have, as before, σ > 0. Note that (0, 0) is the optimal solution to this problem. Now, starting
from the point x⃗0 = (1, 1), write how each coordinate of (x⃗t+1)i relates to (x⃗t)i for i = 1, 2. Use this
to show how the algorithm converges from the initial point (1, 1) to (0, 0). What happens when σ grows
large? HINT: First find the update rule for (x⃗t)1, i.e. keep (x⃗t)2 fixed and figure out how (x⃗t)1 changes
when t is odd. Then do the same for (x⃗t)2 when (x⃗t)1 is fixed for even t.

Solution: We first find the update rule for x1. Note that we only update x1 when t is odd. Now, by taking
the gradient and setting it to 0, we get:

σ((xt+1)1 + (xt)2) + ((xt+1)1 − (xt)2) = 0 =⇒ (x(t+1))1 = (1 − σ)
(1 + σ) (xt)2. (9)

Note that the function, f , is symmetric in the variables, x1 and x2. Therefore, the update rule for x2 (when
t is even) is given by:

(x(t+1))2 = (1 − σ)
(1 + σ) (xt)1. (10)

Therefore, we get for all t ≥ 2:

(xt)1 =
(

1 − σ

1 + σ

)2⌊ t+1
2 ⌋−1

and (xt)2 =
(

1 − σ

1 + σ

)2⌊ t
2 ⌋

. (11)

When σ grows large, the 1−σ
1+σ goes to −1 and this results in slow convergence as the algorithm converges

quickly when
∣∣∣ 1−σ

1+σ

∣∣∣ is small.

(d) Now, let f(x⃗) = 1
2 x⃗⊤Ax⃗+x⃗⊤b⃗+c where A is PD. When we run gradient descent on f(x⃗), the convergence

along each of the unit eigenvectors v⃗i of A is

|1 − η (λi{A})| (12)

This can be derived similar to HW 8 Question 3e, which you may reference. Formally, in the current
setting, we have

(x⃗k − x⃗⋆) = (I − ηA)k(x⃗0 − x⃗⋆)

One way we can derive an “optimal” learning rate η⋆ is to minimize the largest rate of convergence:

η⋆ ∈ argmin
η∈R

max
i∈{1,...,n}

|1 − η (λi{A})| . (13)

One important property of η⋆ is that it makes the rates of convergence |1 − η (λi{A})| associated with the
largest and smallest singular values of A equal, i.e.,

|1 − η(λmax{A})| = |1 − η(λmin{A})|

Use this property to show that
η⋆ = 2

λmax{A} + λmin{A}
(14)

where λmin{A} = λn{A} is the nth largest singular value of A and similar for the maximum.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

Solution: We have

|1 − η⋆ (λmin{A})| = |1 − η⋆ (λmax{A})| (15)

1 − η⋆ (λmin{A}) = − (1 − η⋆ (λmax{A})) (16)

1 − η⋆ (λmin{A}) = η⋆ (λmax{A}) − 1 (17)

2 = η⋆ (λmax{A} + λmin{A}) (18)

η⋆ = 2
λmax{A} + λmin{A}

. (19)

Here the second equality is the most challenging to derive. It follows from the first inequality by the
following reasoning:

• If 1 − η⋆ (λmin{A}) and 1 − η⋆ (λmax{A}) have the same sign, then by the first equality, they must be
equal. This means that λmax{A} = λ1{A} = λ2{A} = · · · = λn{A} = λmin{A} and the optimal
learning rate η⋆ sets each rate 1 − η⋆ (λi{A}) to 0 simultaneously, ensuring convergence in one step.
If both sides are 0 then the second equality holds (because 0 = −0).

• Otherwise, 1−η⋆ (λmin{A}) and 1−η⋆ (λmax{A}) have opposite signs. Since λmax{A} > λmin{A}
(since if they were equal we would be in the first case), we have 1−η⋆ (λmin{A}) > 1−η⋆ (λmax{A}).
Thus 1 − η⋆ (λmin{A}) must be positive and 1 − η⋆ (λmax{A}) must be negative. The absolute value
of a negative number is its negative, so the second equality follows directly from the first equality.

(e) Finally, for the objective function (8), write an equation relating x⃗t to x⃗0 if x⃗0 =
[

1
−1

]
. Assume for this

part that σ > 1 and reason about how quickly gradient descent converges when σ grows large. HINT: What
is the optimal step size for gradient descent, using the previous part? HINT: Also note that f is given by:

f(x⃗) = x⃗⊤Ax⃗ where A = 2
(

σ

[
1√
2

1√
2

] [
1√
2

1√
2

]
+
[

1√
2

− 1√
2

] [
1√
2 − 1√

2

])
. (20)

Solution: We first note that f is given by:

f(x⃗) = x⃗⊤Ax⃗ where A = 2
(

σ

[
1√
2

1√
2

] [
1√
2

1√
2

]
+
[

1√
2

− 1√
2

] [
1√
2 − 1√

2

])
. (21)

Therefore, we have that λmax of A is 2σ and λmin is 2. Using the result from the previous part (and dividing
by 2 since the optimal learning rate was computed for 1

2 x⃗⊤Ax⃗ + x⃗⊤b⃗ + c and not x⃗⊤Ax⃗ − 2⃗b⊤x⃗ + c), the
step size for gradient descent is set to 1/(2σ + 2). Now, we have that:

∇f((1, −1)) =
[

4
−4

]
. (22)

Therefore, we have that:

x⃗1 = x⃗0 − η∇f((1, −1)) =
(

1 − 2
σ + 1

)[
1

−1

]
. (23)

By iterating the above procedure we see that:

x⃗t =
(

1 − 2
σ + 1

)t
[

1
−1

]
. (24)

Therefore, when σ is large, the convergence rate of gradient descent is really slow. However, Newton’s
method would find the optimum in one step.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

2. Gradient Descent vs Newton Method

Run the Jupyter notebook gradient_vs_newton.ipynb which demonstrates differences between gradient
descent and Newton’s method.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

3. Modified SVM

Let C > 0. Suppose we have labeled data (x⃗i, yi) ∈ Rd ×{−1, 1} for i = 1, . . . , n. For each i, define z⃗i
.= yix⃗i.

Finally, define Z
.=
[
z⃗1, . . . , z⃗n

]⊤
∈ Rn×d.

Recall that the soft-margin support vector machine problem can be expressed using slack variables as

p⋆
1 = min

w⃗,s⃗

1
2 ∥w⃗∥2

2 + C

n∑
i=1

si (25)

s.t. si = max{0, 1 − z⃗⊤
i w⃗}, ∀i ∈ {1, . . . , n}.

In this problem we consider a modified SVM program with a squared penalty:

p⋆
2 = min

w⃗,s⃗

1
2 ∥w⃗∥2

2 + C

2

n∑
i=1

s2
i (26)

s.t. si = max{0, 1 − z⃗⊤
i w⃗}, ∀i ∈ {1, . . . , n}.

We will use another representation of this program, namely one with affine constraints:

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥2

2 + C

2 ∥s⃗∥2
2 (27)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗ − Zw⃗,

where the inequality constraints are componentwise (as usual).

(a) Choose the smallest class that problem (27) belongs to (LP/QP/SOCP/etc).

Solution: It is a QP – it has a quadratic objective and affine constraints.

(b) Prove that strong duality holds for (27).

Solution: The objective function is a convex quadratic and the constraints are affine (hence convex) in w⃗

and s⃗, so the problem is convex. Furthermore, there is a strictly feasible point – we can construct one by
picking any w⃗ and then picking s⃗ whose components are large enough to fulfill the inequalities. This is
always possible since there is no upper bound on the components of s⃗. Thus Slater’s condition holds, so
strong duality holds.

(c) Are the KKT conditions for problem (27) necessary, sufficient or both necessary and sufficient for global
optimality?

Solution: The objective function is a convex quadratic and the constraints are affine (hence convex) in w⃗

and s⃗, so the problem is convex.

Since the problem is convex, all functions involved are continuously differentiable, and strong duality
holds, the KKT conditions are both necessary and sufficient for optimality; that is, they are equivalent to
optimality conditions.

(d) Let α⃗ be the dual variable corresponding to the constraint s⃗ ≥ 0⃗. What is the dimension (i.e., number of
entries) of α⃗?

Solution: α⃗ ∈ Rn since s⃗ ∈ Rn.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

(e) Show that the Lagrangian L(w⃗, s⃗, α⃗, β⃗) of problem (27), where α⃗ is the dual variable corresponding to the
constraint s⃗ ≥ 0⃗, and β⃗ is the dual variable corresponding to the constraint s⃗ ≥ 1⃗ − Zw⃗, is equal to

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥2

2 + C

2 ∥s⃗∥2
2 − s⃗⊤(α⃗ + β⃗) − w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (28)

Solution: We have

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥2

2 + C

2 ∥s⃗∥2
2 + α⃗⊤(−s⃗) + β⃗⊤(⃗1 − Zw⃗ − s⃗) (29)

= 1
2 ∥w⃗∥2

2 + C

2 ∥s⃗∥2
2 − s⃗⊤(α⃗ + β⃗) − w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (30)

(f) Write the KKT conditions for problem (27). Show that if (w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) obey the KKT conditions for
problem (27), then

w⃗⋆ = Z⊤β⃗⋆ and s⃗⋆ = α⃗⋆ + β⃗⋆

C
. (31)

HINT: For the first order/stationarity condition on the Lagrangian you will need to consider partial
derivatives with respect to both w⃗ and s⃗.
Solution: Let (w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) satisfy the KKT conditions. We have:

• Primal feasibility: s⃗⋆ ≥ 0 and s⃗⋆ ≥ 1⃗ − Zw⃗⋆.
• Dual feasibility: α⃗⋆ ≥ 0⃗, β⃗⋆ ≥ 0⃗.
• Complementary slackness: α⋆

i s⋆
i = 0 and β⋆

i (1 − z⃗⊤
i w⃗⋆ − s⋆

i) = 0 for each i.
• Stationarity: ∇w⃗L(w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) = 0⃗ and ∇s⃗L(w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) = 0⃗. These become

0⃗ = w⃗⋆ − Z⊤β⃗⋆ (32)

0⃗ = Cs⃗⋆ − (α⃗⋆ + β⃗⋆) (33)

which rearrange to the claimed equalities.

(g) Compute the dual function of problem (27) as

g(α⃗, β⃗) .= L(w⃗⋆(α⃗, β⃗), s⃗⋆(α⃗, β⃗), α⃗, β⃗) (34)

where from the previous part we have that

w⃗⋆(α⃗, β⃗) = Z⊤β⃗ and s⃗⋆(α⃗, β⃗) = α⃗ + β⃗

C
. (35)

Your final expression for g(α⃗, β⃗) should not contain any maximizations, minimizations or terms including
w⃗, s⃗, w⃗⋆, or s⃗⋆. It should only contain α⃗, β⃗, C, Z, and numerical constants.
Solution: The dual function is

g(α⃗, β⃗) = L(w⃗⋆(α⃗, β⃗), s⃗⋆(α⃗, β⃗), α⃗, β⃗) (36)

= 1
2

∥∥∥w⃗⋆(α⃗, β⃗)
∥∥∥2

2
+ C

2

∥∥∥s⃗⋆(α⃗, β⃗)
∥∥∥2

2
− s⃗⋆(α⃗, β⃗)⊤(α⃗ + β⃗) − w⃗⋆(α⃗, β⃗)⊤Z⊤β⃗ + 1⃗⊤β⃗ (37)

= 1
2

∥∥∥Z⊤β⃗
∥∥∥2

2
+ C

2

∥∥∥∥∥ α⃗ + β⃗

C

∥∥∥∥∥
2

2

−

(
α⃗ + β⃗

C

)⊤

(α⃗ + β⃗) − β⃗⊤ZZ⊤β⃗ + 1⃗⊤β⃗ (38)

= −1
2 β⃗⊤ZZ⊤β⃗ − 1

2C

∥∥∥α⃗ + β⃗
∥∥∥2

2
+ 1⃗⊤β⃗. (39)

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

(h) Let α⃗⋆ and β⃗⋆ be optimal dual variables that solve the problem

d⋆ .= max
α⃗,β⃗≥0⃗

g(α⃗, β⃗). (40)

It turns out that α⃗⋆ can also be obtained by solving the quadratic program:

min
α⃗

∥∥∥α⃗ + β⃗⋆
∥∥∥2

2
(41)

s.t. α⃗ ≥ 0⃗.

Solve this quadratic program (41) directly and find α⃗⋆.

HINT: The duality or KKT approaches are not recommended. Consider α⃗ =
[
α1 · · · αn

]⊤
, and use the

components of α⃗ to decompose the problem into n separate scalar problems. Solve each one by checking
critical points; that is, points where the gradient is 0, the boundary of the feasible set, and ±∞.

Solution: We have that ∥∥∥α⃗ + β⃗⋆
∥∥∥2

2
=

n∑
i=1

(αi + β⋆
i)2. (42)

Also, the α⃗ ≥ 0⃗ constraint is n separate constraints of the form αi ≥ 0. Thus, we can solve for each αi

separately as
α⋆

i ∈ argmin
αi≥0

(αi + β⋆
i)2. (43)

This problem is convex and so we can solve it by checking the critical points.

• The gradient (w.r.t. αi) is 0 if and only if αi = −β⋆
i . If β⋆

i > 0 then this solution is infeasible, and if
β⋆

i = 0 then αi = 0.

• The constraint boundary is αi = 0; this solution is feasible with objective value (β⋆
i)2.

• The limit αi → +∞ makes the objective value arbitrarily large, much larger than (β⋆
i)2. The limit

αi → −∞ makes the solution infeasible.

Thus the optimal solution for each scalar problem is α⋆
i = 0. Thus α⃗⋆ = 0⃗.

(i) Let β⋆ be a solution to the dual problem. Characterize the pairs (x⃗i, yi) which are “support vectors”, i.e.,
contribute to the optimal weight vector w⃗⋆, in terms of β⋆.

Solution: We have that w⃗⋆ =
∑n

i=1 β⋆
i z⃗i. If β⋆

i > 0 then z⃗i contributes to w⃗⋆, so (x⃗i, yi) is a support
vector. Otherwise β⋆

i = 0, then z⃗i does not contribute to w⃗⋆, so (x⃗i, yi) is not a support vector.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

4. Ridge Regression Classifier Vs. SVM

In this problem, we explore Ridge Regression as a classifier, and compare it to SVM. Recall Ridge Regression
solves the problem

min
w⃗

∥Xw⃗ − y⃗∥2
2 + λ ∥w⃗∥2

2 , (44)

where X ∈ Rm×n, and y⃗ ∈ Rn

(a) Ridge Regression as is solves a regression problem. Given data X ∈ Rm×n and labels y⃗ ∈ {−1, 1}m,
explain how we might be able to train a Ridge Regression model and use it to classify a test point.

Solution: We have that the optimal w⃗ from solving ridge regression is given by

w⃗∗ = (X⊤X + λI)−1X⊤y⃗ (45)

Hence given a new data point xtest, we look at x⊤
testw⃗

∗ and if it is positive, we say ytest = 1 and otherwise
we say ytest = −1. In other words, we can say ytest = sign(x⊤

testw⃗
∗).

(b) Complete the accompanying Jupyter notebook to compare Ridge Regression and SVM.

Solution: See Jupyter notebook for coding solution.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

5. Wasserstein distance between distributions

The Wasserstein distance is a measure of distance between probability distributions. The Wasserstein distance
can roughly be thought of as the cost of turning one distribution to another distribution by moving probability
mass around from one location to another. It is also sometimes called the earth-mover distance, because it may
be visualized as the cost of moving a pile of dirt from one configuration to another.

Figure 1: Visualization of µ histogram on left and ν histogram on right.

Let n ∈ N. We define two discrete probability distributions µ⃗ = (µ1, · · · , µn) and ν⃗ = (ν1, · · · , νn); that is,
µi, νi ≥ 0 and

∑
i µi =

∑
i νi = 1.

We define C ∈ Rn×n to be a cost matrix where cij ≥ 0 is the cost of transporting one unit of probability mass
from location i ∈ {1, · · · , n} to location j ∈ {1, · · · , n}. We define a matrix M ∈ Rn×n where mij ≥ 0
denotes the quantity of probability mass to be moved from location i to location j. In summary, if we move mij

units of probability mass from location i to location j, we incur cost cijmij .

In addition, the M matrix satisfies the following conditions. Row i of M indicates where all the probability mass
in location i in the µ⃗ distribution ends up. Hence, the sum of all the entries in row i must equal µi. Similarly,
column j indicates where all the probability mass in location j in the ν⃗ distribution came from. Hence, the sum
of all the entries in column j must equal νj . We can summarize these conditions in math:

M 1⃗ = µ⃗ (46)

M⊤1⃗ = ν⃗, (47)

where 1⃗ is a vector of 1s.

(a) What is the total cost of transporting the mass µ⃗ into ν⃗ by following the transportation plan dictated by the
matrix M?

Solution: The total cost by following the transportation plan is
∑

i,j cijmij = Tr(CT M) = ⟨C, M⟩F

where ⟨C, M⟩F is the Frobenius inner product.

(b) Given the cost matrix C, write the optimization problem of finding the transportation plan M⋆ with minimal
total cost. What type of optimization problem is it? (LP, QP, · · · ?).

Solution: To find M⋆ that incurs minimal total cost given the fixed cost matrix C, we can formulate
a minimization problem over M . The objective of the problem is the total cost we derived in part (a),
⟨C, M⟩F . This minimization problem is also subject to the following constraints from the definition of M :

M 1⃗ = µ

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

M⊤1⃗ = ν

M ≥ 0

So, finially we piece everything together and write the minimization problem as:

M⋆ = argmin
M

⟨C, M⟩F

s.t. M 1⃗ = µ

M⊤1⃗ = ν

M ≥ 0

Since both the objective and the constraints are affine in M , this optimization problem is an LP.

Now, we apply the idea of Wasserstein distance to document similarity as illustrated in Fig. 2. Here, our
application is that we want to identify words in two different documents that are most similar. This is mostly
just a fun application, but may be of interest if you are trying to compare documents that are identical but
in different languages. Here we consider a contrived example.

Natural Language Processing techniques have standard tools for converting words into vectors and embed-
ding them in vector spaces, so that we can use machine learning and optimization tools on them. One such
embedding is called word2vec. Assume we are provided with a word2vec embedding for the words in two
documents. The word travel cost cij between word i and word j is the Euclidean distance ∥xi − xj∥2

in the word embedding space. We can compute the similarity between two documents as the minimum
cumulative cost required to move all non-stop words from one document to the other.

Figure 2: An illustration of the Wasserstein distance. All non-stop words (bold) of both documents are embedded into a word
embedding space. The similarity between the two documents is the minimum cumulative distance that all words in document 1
need to travel to exactly match document 2.

(c) Using the text_kantorovich.ipynb Juypter notebook, implement the calculation of the Wasserstein
distance in the notebook and use the provided code to visualize the resulting matrix M . Comment on the
results.

Solution: Formulating and solving the problem with cvxpy produces the following plot. We see that the
matrix M agrees with our intuition and “moves” words to semantically similar words.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11

EECS 127/227AT Homework 13 2024-04-19 21:04:13-07:00

6. Homework Process

With whom did you work on this homework? List the names and SIDs of your group members.

NOTE: If you didn’t work with anyone, you can put “none” as your answer.

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12

