First lecture plan

Introductions

Administrivia

Optimization
Instructor

Prof. Gireeja Ranade
565 Cory
ranade@eecs.berkeley.edu

OH: Right after class on Tu/Th
Discussions

Weekly discussion sections conducted by the GSIs

Discussions start on Wed Aug 30.
Discussions start on a Wednesday cycle.

Choose any one section to attend. Content on Wednesday, Thursday and Friday is the same in a given week.

Discussion sections with low attendance may be cancelled. We will likely cancel the Thursday 8 am section.

Shop around to find a discussion and GSI-teaching style that works for you.
Website

https://eecs127.github.io/
Course Staff Intros

• Alicia Matsumoto, Head TA
• Aryan Jain, supporting Head TA
• Druv Pai, Head of Content
• Utkarsha Agwan, Content
• Aliyah Hsu, Content
• Tarun Kathuria, Content
• Aekus Bhathal, Content
• Aditya Ramabadran, Tutor
• Joseph Jin, Tutor
• Yuki Ito, Tutor
• Jeffery Wu, Tutor
Getting help

- In class, in discussion, OH and HW party
- Technical questions: Ed (monitored by instructors and GSIs)
- Logistics: eecs127@berkeley.edu
 - Personal questions not for Piazza, any conflicts or emergencies, administrative questions
- Each other!
 - Diverse class
 - Be compassionate, help each other out
Should you take this course?

- **Prerequisites**
 - EECS16A AND 16B
 - Or Math 54
 - CS70
 - Math 53

- **Mixed and diverse class --- grads and undergrads**
 - You have to take the initiative to fill in any gaps
 - We are here to help
Concurrent enrollment

- We expect that all students will get into the class

Convex Optimization, Boyd and Vandenberghe (Available freely on the web)
“Livebook”

- Hypertext where users can post comments / ask questions
- Link on website
Resources

This class comes with an integrated set of material

– Books
– Livebook
– Discussion session notes
– Homework aligned with material taught in class
Homework policies

For completing the class you need to turn in homeworks
- Weekly homework assignments
- Due every Friday at 11 pm
- Submission on Gradescope

- Homework party Thursday 9-11 am Woz lounge
- Attend uGSI/GSI office hours and Homework party for help!
- Work in groups and don’t procrastinate!
- Collaboration is welcomed, but each homework must include the names of your collaborators
- Cheating will not be tolerated
- Lowest two HW scores will be dropped
Homework submission process

For completing the class you need to turn in homeworks through gradescope: https://www.gradescope.com

- Once you make an account, click “Add a course”
- Our course entry code is: BBB247

Self-grades: To get credit on the homework you must also turn in self-grades for the homework, due the following Friday at 11 pm.
Accommodations

– Please send us your DSP letter as soon as possible.
– We need time to provide accommodations, so please get the letters to the teaching staff (eecs127@berkeley.edu) in the first two weeks of class.
– With the letter from the DSP, we know exactly what to do, and we can ask for the resources to do it.
– Talk to us ahead of time.
– Share your concerns.
– We will do everything we can to help, tell us how to help you.

Other personal needs
Let us know
– In person in OH
– On email
Exam policies

There will be 1 midterm (TBA, likely week of Oct 10) and 1 final.

- The final will be a standard 3 hour written final in the appointed exam time slot.
- There will be no make-up or alternate exams. Time conflicts with other courses are not allowed and will not be accommodated under any circumstances.
Projects

• New-ish this semester
 – We will have an option to do a project at the end of the semester
 – You may choose to complete a project if you wish
 – Projects will be announced in second half of the course
 – If you choose to complete a project, it will count towards your grade and remove weight from the exams. Exact scheme will be announced.
Cheating

Throughout the semester, you are encouraged to collaborate with other students in the class. However, directly copying from your peers’ assignments will not be tolerated. Here we give our formal definition of cheating in this course.

CHEATING:
Turning in work done by another person as if it were your own.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction/Least-Squares/Convexity</td>
</tr>
<tr>
<td>2</td>
<td>Linear algebra review</td>
</tr>
<tr>
<td>3</td>
<td>Linear algebra review: Symmetric matrices</td>
</tr>
<tr>
<td>4</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>5</td>
<td>Low-rank approximation</td>
</tr>
<tr>
<td>6</td>
<td>Least-squares and variants: Ridge regression</td>
</tr>
<tr>
<td>7</td>
<td>Connections: Ridge, PCA, MLE</td>
</tr>
<tr>
<td>8</td>
<td>Vector Calculus</td>
</tr>
<tr>
<td>9</td>
<td>Convexity</td>
</tr>
<tr>
<td>10</td>
<td>Convex optimization</td>
</tr>
<tr>
<td>11</td>
<td>Descent methods</td>
</tr>
<tr>
<td>12</td>
<td>Newtons Method</td>
</tr>
<tr>
<td>13</td>
<td>Weak Duality</td>
</tr>
<tr>
<td>14</td>
<td>Strong duality</td>
</tr>
<tr>
<td>15</td>
<td>KKT, optimality conditions</td>
</tr>
<tr>
<td>16</td>
<td>LPs</td>
</tr>
<tr>
<td>17</td>
<td>QPs and SOCPs</td>
</tr>
<tr>
<td>18</td>
<td>L1 norms and LASSO</td>
</tr>
<tr>
<td>19</td>
<td>Other descent methods</td>
</tr>
<tr>
<td>20</td>
<td>Advanced topics: TBD</td>
</tr>
<tr>
<td>21</td>
<td>Applications: LQR/Control</td>
</tr>
<tr>
<td>22</td>
<td>Applications: SVM</td>
</tr>
</tbody>
</table>