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1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I
will follow the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.
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When the exam starts, write your SID at the top of every page.
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Do not turn the page until your proctor tells you to do so.
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4. Linear Program (12 pts)

Consider the linear program

min
x⃗∈R2

[
1
−1

]⊤

x⃗ (1)

s.t.
[
−1
−1

]
≤ x⃗ ≤

[
1
1

]
,

0 ≤
[
1
1

]⊤

x⃗ ≤ 1.5.

where x⃗
.=
[
x1

x2

]
.

(a) (6 pts) Draw the constraints on this problem and shade in the feasible region.
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Recall the linear program (1):

min
x⃗∈R2

[
1
−1

]⊤

x⃗ (1)

s.t.
[
−1
−1

]
≤ x⃗ ≤

[
1
1

]
,

0 ≤
[
1
1

]⊤

x⃗ ≤ 1.5.

(b) (3 pts) Plot and label level sets of the objective, i.e.,
[
1
−1

]⊤

x⃗ = k for k = {−2, 0, 2} on

the figure below.
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Recall the linear program (1):

min
x⃗∈R2

[
1
−1

]⊤

x⃗ (1)

s.t.
[
−1
−1

]
≤ x⃗ ≤

[
1
1

]
,

0 ≤
[
1
1

]⊤

x⃗ ≤ 1.5.

(c) (3 pts) Identify the optimal value p⋆ for the problem (1) and the vector x⃗⋆ which
achieves it. You do not need to justify your answer.
What are the active constraints at the optimal solution? You do not need to justify your
answer.
NOTE : It may be helpful to draw the level sets and constraints on one plot. This plot below will not
be graded; it is just there for your convenience.
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5. Weak vs Strong Duality (13 pts)

Consider the convex problem

p⋆ = min
x⃗∈R2

1
2(x1 + 1)2 + x2

2 (2)

s.t. x1 = 0.

(a) (2 pts) Find the primal optimum p⋆ in problem (2) by substituting the constraint
x1 = 0 into the objective function. You do not need to justify your answer.

(b) (3 pts) Does Slater’s condition hold for problem (2)? Does strong duality hold? Justify
your answer.
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Recall problem (2):

p⋆ = min
x⃗∈R2

1
2(x1 + 1)2 + x2

2 (2)

s.t. x1 = 0.

(c) (8 pts) Find the dual function g(ν) and the dual optimum d⋆ = maxν∈R g(ν). Show your
work.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6



EECS 127/227AT Final
Print your student ID:

2022-12-20 13:48:06-08:00

[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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6. Transformations (12 pts)

For each of the below problems, assume:

• x⃗ ∈ Rn;

• f : Rn → R and g : Rn → R;

• X ⊂ Rn.

Shade in or circle “True” if the statement is always true. Otherwise, shade in or circle “False”. Ensure
that the option you select is clear. You do not need to justify your answer. No partial credit will be
awarded.

(a) (3 pts) Suppose maxx⃗∈X f(x⃗) < ∞.

max
x⃗∈X

f(x⃗) = −
[
min
x⃗∈X

−f(x⃗)
]
. (3)

⃝ True
⃝ False

(b) (3 pts) Suppose Ω ⊆ X , i.e., Ω is a subset of X .

max
x⃗∈X

f(x⃗) ≤max
x⃗∈Ω

f(x⃗). (4)

⃝ True
⃝ False

(c) (3 pts) Suppose maxx⃗∈X f(x⃗) < ∞, maxx⃗∈X g(x⃗) < ∞, and both maxima are achieved.

max
x⃗∈X

[
f(x⃗) + g(x⃗)

]
≤ max

x⃗∈X
f(x⃗) + max

x⃗∈X
g(x⃗). (5)

⃝ True
⃝ False

(d) (3 pts) Suppose maxx⃗∈X f(x⃗) < ∞ and the maximum is achieved at a unique maximizer.

argmax
x⃗∈X

ef(x⃗) = argmax
x⃗∈X

f(x⃗). (6)

⃝ True
⃝ False
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[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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7. Low Rank Approximation (3 pts)

Let A ∈ R3×4 be a matrix whose full SVD is

A =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

U

7 0 0 0
0 2 0 0
0 0 1 0


︸ ︷︷ ︸

Σ


1√
2 − 1√

2 0 0
0 0 1 0
0 0 0 1
1√
2

1√
2 0 0


︸ ︷︷ ︸

V ⊤

. (7)

Give the best rank-1 approximation to A, i.e., the solution to the problem

argmin
B∈R3×4

rk(B)≤1

∥A−B∥2F . (8)

No justification is necessary. No partial credit will be awarded.

NOTE : Please leave your answer in terms of a matrix product.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 10
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8. SOCP (12 pts)

Consider a matrix A ∈ Rm×n and vectors b⃗ ∈ Rm, c⃗ ∈ Rn and scalar d ∈ R. Consider the problem

min
z⃗∈Rn

(∥Az⃗ − b⃗∥2 − c⃗⊤z⃗ − d)2. (9)

(a) (8 pts) Suppose m = 1 and n = 1. Then z⃗ = z is just a scalar, and A, b⃗, c⃗ are also just scalars.
In particular, suppose A = 1, b⃗ = 1, c⃗ = 1, and d = 1. For these values, is the optimization
problem (9) convex? Justify your answer.
HINT: First, rewrite the problem with the given values. Then, consider evaluating the objective
function at z = 0 and z = 2.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11
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(b) (4 pts) The problem can be reformulated as

min
x⃗∈Rn+1

[
0⃗
1

]⊤

x⃗ (10)

s.t.
∥∥∥[A 0⃗

]
x⃗− b⃗

∥∥∥
2
−
[
c⃗

1

]⊤

x⃗− d ≤ 0 (11)

∥∥∥[A 0⃗
]
x⃗− b⃗

∥∥∥
2
−

[
c⃗

−1

]⊤

x⃗− d ≥ 0. (12)

where 0⃗ is the all-zeros vector of the appropriate dimension. Which constraint should be
dropped to make the problem an SOCP? Justify your answer.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12
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9. Power Purchase (20 pts)

This problem describes a simplified version of the optimization problem on the power grid. Consider a
consumer who wants to consume d units (in kilo-Watt-hour (kWh)) of electrical energy. The consumer
can purchase this energy from a combination of electricity generators. Consider n generators indexed
by i = 1, 2, ..., n, and denote the energy output of the ith generator by xi. The cost of generating xi

units of energy is given by a generator specific cost fi(xi):

fi(xi) = aix
2
i + bixi (13)

where ai ≥ 0. Each generator has a constraint on the maximum energy it can produce, and this cap is
denoted by mi, i.e., 0 ≤ xi ≤ mi.

The consumer tries to purchase d units of energy at minimum cost by optimizing the amount of
energy xi purchased from each generator by solving:

min
x1,x2,...,xn

n∑
i=1

fi(xi) (14)

s.t.
n∑

i=1
xi = d

0 ≤ xi ≤ mi i = 1, ..., n.

(a) (3 pts) Choose the smallest class that problem (14) belongs to (LP/QP/SOCP/etc.).
You do not need to justify your answer.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13
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(b) (6 pts) We consider a specific case of the optimization problem (14):

min
x1,x2

(
x2
1 + 2x1

)
+

(3
2x

2
2

)
(15)

s.t. x1 + x2 = 1

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 1.

This problem is a specific instance of (14) with n = 2, d = 1, m1 = 2, and m2 = 1. What are
the optimal values of x1, x2? Show your work.
HINT: Try eliminating x2 by replacing it with 1−x1, solve the unconstrained optimization problem
and check back to see if the constraints are satisfied.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14



EECS 127/227AT Final
Print your student ID:

2022-12-20 13:48:06-08:00

(c) (6 pts) Consider a similar problem as in the previous subpart (b), this time with d = 2:

min
x1,x2

(
x2
1 + 2x1

)
+

(3
2x

2
2

)
(16)

s.t. x1 + x2 = 2

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 1.

What are the optimal values of x1, x2? Show your work.
HINT: Try eliminating x2 by replacing it with 2−x1. Check the function value at the critical points
of the problem, i.e., the points where the gradient is zero or undefined, points on the boundaries,
and ±∞.
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(d) (5 pts) Consider an instance of (14) where n = 2, two generators generate energy x1, x2 to fulfill
demand d, with associated costs f1(x1) and f2(x2) and capacities m1, m2:

min
x1,x2

f1(x1) + f2(x2) (17)

s.t. x1 + x2 = d

0 ≤ xi ≤ mi, i = 1, 2.

Consider the dual variables corresponding to the constraints as below:

Dual Variable Constraint

ν x1 + x2 = d

λ1 0 ≤ x1

λ2 x1 ≤ m1

λ3 0 ≤ x2

λ4 x2 ≤ m2

Write the complementary slackness conditions for this problem.
Suppose you solve the above problem (17), and find that your solution is such that 0 < x⋆

1 < m1

and 0 < x⋆
2 = m2. Which dual variables are necessarily equal to zero?

You may assume (without needing to prove) that strong duality holds.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 16
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[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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10. Proximal Operator (8 pts)

For a function h : Rn → R, define its proximal operator proxh : Rn → Rn as

proxh(x⃗)
.= argmin

u⃗∈Rn

(
h(u⃗) + 1

2 ∥x⃗− u⃗∥22
)
. (18)

Consider a special case where n = 1, i.e., we have a scalar problem, and h(x) .= λ |x| for a
constant λ ≥ 0. Let x0 ∈ R. Prove that

proxh(x0)
.= argmin

u∈R

(
λ |u|+ 1

2(x0 − u)2
)

(19)

is the soft-thresholding function that we’ve seen in the context of the LASSO problem,
i.e.,

argmin
u∈R

(
λ |u|+ 1

2(x0 − u)2
)

=


x0 + λ, if x0 < −λ

0, if − λ ≤ x0 ≤ λ

x0 − λ, if x0 > λ.

(20)

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 18
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[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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11. Modified SVM (31 pts)

Let Z ∈ Rn×d be a constant known matrix, and let C > 0 be a scalar. Consider the problem

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 (21)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗− Zw⃗,

where w⃗ ∈ Rd and s⃗ ∈ Rn are the optimization variables, 0⃗ =
[
0 · · · 0

]⊤
∈ Rn is the vector of all

zeros, 1⃗ =
[
1 · · · 1

]⊤
∈ Rn is the vector of all ones. Strong duality holds for this problem.

(a) (3 pts) Choose the smallest class that problem (21) belongs to (LP/QP/SOCP/etc).
You do not need to justify your answer.

(b) (4 pts) Are the KKT conditions for problem (21) necessary, sufficient or both neces-
sary and sufficient for global optimality?
NOTE : You may use (without needing to prove) the fact that strong duality holds.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 20
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Recall problem (21):

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 (21)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗− Zw⃗,

where w⃗ ∈ Rd and s⃗ ∈ Rn.

(c) (2 pts) Let α⃗ be the dual variable corresponding to the constraint s⃗ ≥ 0⃗. What is the
dimension (i.e., number of entries) of α⃗? You do not need to justify your answer.

(d) (4 pts) Show that the Lagrangian L(w⃗, s⃗, α⃗, β⃗) of problem (21), where α⃗ is the dual variable
corresponding to the constraint s⃗ ≥ 0⃗, and β⃗ is the dual variable corresponding to the constraint
s⃗ ≥ 1⃗− Zw⃗, is equal to

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 − s⃗⊤(α⃗+ β⃗)− w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (22)

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 21
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Recall problem (21):

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 (21)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗− Zw⃗.

Recall that this problem has the Lagrangian

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 − s⃗⊤(α⃗+ β⃗)− w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (22)

(e) (8 pts) Write the KKT conditions for problem (21). Show that if (w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) obey
the KKT conditions for problem (21), then

w⃗⋆ = Z⊤β⃗⋆ and s⃗⋆ = α⃗⋆ + β⃗⋆

C
. (23)

HINT: For the first order/stationarity condition on the Lagrangian you will need to consider
partial derivatives with respect to both w⃗ and s⃗.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 22
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[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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Recall problem (21):

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 (21)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗− Zw⃗.

Recall that this problem has the Lagrangian

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 − s⃗⊤(α⃗+ β⃗)− w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (22)

(f) (5 pts) Compute the dual function of problem (21) as

g(α⃗, β⃗) .= L(w⃗⋆(α⃗, β⃗), s⃗⋆(α⃗, β⃗), α⃗, β⃗) (24)

where from the previous part we have that

w⃗⋆(α⃗, β⃗) = Z⊤β⃗ and s⃗⋆(α⃗, β⃗) = α⃗+ β⃗

C
. (25)

Your final expression for g(α⃗, β⃗) should not contain any maximizations, minimizations or terms
including w⃗, s⃗, w⃗⋆, or s⃗⋆. It should only contain α⃗, β⃗, C, Z, and numerical constants. Show your
work.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 24
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(g) (5 pts) Let α⃗⋆ and β⃗⋆ be optimal dual variables that solve the problem

d⋆
.= max

α⃗,β⃗≥0⃗
g(α⃗, β⃗). (26)

It turns out that α⃗⋆ can also be obtained by solving the quadratic program:

min
α⃗

∥∥∥α⃗+ β⃗⋆
∥∥∥2
2

(27)

s.t. α⃗ ≥ 0⃗.

Solve this quadratic program (27) directly and find α⃗⋆. Show your work.

HINT: The duality or KKT approaches are not recommended. Consider α⃗ =
[
α1 · · · αn

]⊤
,

and use the components of α⃗ to decompose the problem into n separate scalar problems. Solve
each one by checking critical points; that is, points where the gradient is 0, the boundary of the
feasible set, and ±∞.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 25



EECS 127/227AT Final
Print your student ID:

2022-12-20 13:48:06-08:00

[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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12. Levenberg-Marquardt Regularization for Newton’s Method (26 pts)

Newton’s method often suffers from non-invertibility of the Hessian H(x⃗) = ∇2f(x⃗). One solution is to
use the modified Hessian H(x⃗) + µI, which is known as the Levenberg-Marquardt regularized Hessian.
In this problem, we explore how to find an appropriate µ given certain conditions on f . This problem
doesn’t depend on an understanding of Newton’s method, other than the first part.

(a) (3 pts) Let f : Rn → R be twice differentiable with Hessian H(x⃗). Let x⃗k be the kth iterate of
Newton’s method on f . Write the Newton’s method step for x⃗k+1 in terms of x⃗k. You
may assume H(x⃗k) is invertible.

(b) (5 pts) Show that for any symmetric matrix A ∈ Sn with λi{A} as the ith largest
eigenvalue of A:

∥A∥2F =
n∑

i=1
λi{A}2. (28)

HINT: Consider using the eigendecomposition or SVD of A.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 27
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(c) (5 pts) Let f : Rn → R be twice differentiable with Hessian H(x⃗). Let M > 0 be such that
∥H(x⃗)∥2F ≤ M2 for all x⃗ ∈ Rn. Use the result in part (b) to show that

−M ≤ λmin{H(x⃗)} for all x⃗ ∈ Rn, (29)

where we let λmin{H(x⃗)} denote the smallest eigenvalue of the symmetric Hessian matrix H(x⃗).
HINT: λmin{H(x⃗)}2 ≤

∑n
i=1 λi{H(x⃗)}2.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 28
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(d) (5 pts) Recall that f : Rn → R is a twice differentiable function with HessianH(x⃗). Even though
H(x⃗) may not be positive definite, we would like to find a small µ ≥ 0 such that H(x⃗) + µI is
positive definite for all x⃗ ∈ Rn. Fix ϵ > 0 and define the optimization problem:

µ⋆ = min
µ≥0

µ (30)

s.t. λi{H(x⃗) + µI} ≥ ϵ, for all i ∈ {1, . . . , n} and x⃗ ∈ Rn.

Show that the constraints in the above problem (30) are equivalent to

λmin{H(x⃗)} ≥ −µ+ ϵ, for all x⃗ ∈ Rn. (31)
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(e) (8 pts) Recall that f : Rn → R is a twice differentiable function with Hessian H(x⃗), and M > 0 is
such that ∥H(x⃗)∥2F ≤ M2 for all x⃗ ∈ Rn. From part (d), we consider the optimization problem
with ϵ > 0:

µ⋆ = min
µ≥0

µ (32)

s.t. λmin{H(x⃗)} ≥ −µ+ ϵ, for all x⃗ ∈ Rn.

In class, you have seen how using slack variables can create an equivalent program:

max
x⃗∈X

f(x⃗) = min
c∈R

c (33)

s.t. f(x⃗) ≤ c for all x⃗ ∈ X .

Using this equivalence between formulations, solve for µ⋆. You may assume that there
exists x⃗0 ∈ Rn such that λmin{H(x⃗0)} = −M , i.e., the lower bound in part (c) is achieved with
equality at some point x⃗0.
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[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.]
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[Extra page for scratch work that will not be graded unless you tell us in the original problem space.]
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Final Instructions

Read the following instructions before the exam.

There are 12 problems of varying numbers of points. You have 180 minutes for the exam. The
problems are of varying difficulty, so pace yourself accordingly, do easier problems first, and avoid spending
too much time on any one question until you have gotten all of the other points you can. Problems are not
necessarily ordered in terms of difficulty, so be sure to read all the problems.

There are 34 pages on the exam, so there should be 17 sheets of paper in the exam. The exam
is printed double-sided. Do not forget the problems on the back sides of the pages! Notify a proctor imme-
diately if a page is missing. Do not tear out or remove any of the pages. Do not remove the exam
from the exam room.

No collaboration is allowed, and do not attempt to cheat in any way. Cheating will not be
tolerated.

Write your student ID on each page. If a page is found without a student ID, and some pages
from your exam go missing, we will have no way of giving you credit for those pages. All exam
pages will be separated during scanning.

You may consult TWO handwritten 8.5” × 11” note sheet(s) (front and back). No phones, calculators,
tablets, computers, other electronic devices, or scratch paper are allowed.

Please write your answers legibly in the boxed spaces provided on the exam. The space provided
should be adequate. If you still run out of space, please use a blank page and clearly tell us in
the original problem space where to look for your solution.

Unless otherwise specified, show all of your work in order to receive full credit. Partial credit will be given
for substantial progress on each problem.

If you need to use the restrooms during the exam, bring your student ID card, your phone, and your exam
to a proctor. You can collect them once you return from the restrooms.

Our advice to you: if you can’t solve the problem, state and solve a simpler one that captures at least
some of its essence. You might get some partial credit, and more importantly, you will perhaps find yourself
on a path to the solution.

Good luck!

Do not turn the page until your proctor tells you to do so.
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