
EECS 127/227AT Optimization Models in Engineering UC Berkeley Fall 2022
Final

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I
will follow the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution:

2. SID (3 pts)

When the exam starts, write your SID at the top of every page.

No extra time will be given to complete this task.

3. Favorites. Any answer, as long as you write it down, will be given full credit. (2 pts)

(a) (1 pts) What’s something that made you happy this year?
Solution: Any answer is fine.

(b) (1 pts) What’s your favorite number?
Solution: Any answer is fine.
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4. Linear Program (12 pts)

Consider the linear program

min
x⃗∈R2

[
1
−1

]⊤
x⃗ (1)

s.t.
[
−1
−1

]
≤ x⃗ ≤

[
1
1

]
,

0 ≤
[
1
1

]⊤
x⃗ ≤ 1.5.

where x⃗
.=
[
x1

x2

]
.

(a) (6 pts) Draw the constraints on this problem and shade in the feasible region.
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Solution:
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(b) (3 pts) Plot and label level sets of the objective, i.e.,
[
1
−1

]⊤
x⃗ = k for k = {−2, 0, 2} on

the figure below.
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Solution:
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(c) (3 pts) Identify the optimal value p⋆ for the problem (1) and the vector x⃗⋆ which
achieves it. You do not need to justify your answer.
What are the active constraints at the optimal solution? You do not need to justify your
answer.
NOTE : It may be helpful to draw the level sets and constraints on one plot. This plot below will not
be graded; it is just there for your convenience.
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Solution: Because the −2-level set only intersects the feasible set at one point, and no k-level
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set intersects the feasible set for k < −2, we have that p⋆ = −2 and the optimal x⃗⋆ is the point

of intersection of the −2-level set and the feasible set. This turns out to be x⃗⋆ =
[
−1
1

]
.

At this point, the active constraints are those that are met with equality. These turn out to be

• x1 ≥ −1;
• x2 ≤ 1;
• x1 + x2 ≥ 0.
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5. Weak vs Strong Duality (13 pts)

Consider the convex problem

p⋆ = min
x⃗∈R2

1
2(x1 + 1)2 + x2

2 (2)

s.t. x1 = 0.

(a) (2 pts) Find the primal optimum p⋆ in problem (2) by substituting the constraint
x1 = 0 into the objective function. You do not need to justify your answer.
Solution: Substituting the constraint in we hav

p⋆ = min
x2∈R

(
1
2(0 + 1)2 + x2

2

)
= 1

2 + min
x2∈R

x2
2 = 1

2 , (3)

with x⃗⋆ =
[
0
0

]
.

(b) (3 pts) Does Slater’s condition hold for problem (2)? Does strong duality hold? Justify
your answer.
Solution: Yes, since the objective function is a convex function, and the single constraint is an
affine equality constraint, Slater’s condition must hold. Thus strong duality must hold.

(c) (8 pts) Find the dual function g(ν) and the dual optimum d⋆ = maxν∈R g(ν). Show your
work.
Solution: The Lagrangian is

L(x⃗, ν) = 1
2(x1 + 1)2 + x2

2 + νx1. (4)

The dual function takes the form:
g(ν) = min

x⃗∈R2
L(x⃗, ν). (5)

Since Equation (5) is a minimization problem whose objective function L(·, ν) is convex in x⃗, we
can find x⃗⋆(ν) by setting its gradient to 0. In particular, we have

0⃗ = ∇x⃗L(x⃗⋆(ν), ν) (6)

=
[
x⋆
1(ν) + 1 + ν

2x⋆
2(ν)

]
(7)

=⇒ x⃗⋆(ν) =
[
−1− ν

0

]
. (8)

Thus

g(ν) = L(x⃗⋆(ν), ν) (9)

= −1
2ν

2 − ν. (10)

To find g⋆, we need to solve the dual problem

g⋆ = max
ν∈R

g(ν) (11)

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6



EECS 127/227AT Final
Print your student ID:

2022-12-20 13:48:10-08:00

= max
ν∈R

(
−1
2ν

2 − ν

)
(12)

Since Equation (11) is a maximization problem and the objective function is concave in ν, we can
find ν⋆ by setting its gradient to 0. In particular, we have

0 = ∇νg(ν⋆)

= −ν⋆ − 1

=⇒ ν⋆ = −1.

Thus
d⋆ = g(ν⋆) = 1

2 . (13)
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6. Transformations (12 pts)

For each of the below problems, assume:

• x⃗ ∈ Rn;

• f : Rn → R and g : Rn → R;

• X ⊂ Rn.

Shade in or circle “True” if the statement is always true. Otherwise, shade in or circle “False”. Ensure
that the option you select is clear. You do not need to justify your answer. No partial credit will be
awarded.

(a) (3 pts) Suppose maxx⃗∈X f(x⃗) < ∞.

max
x⃗∈X

f(x⃗) = −
[
min
x⃗∈X

−f(x⃗)
]
. (14)

⃝ True
⃝ False

Solution: True.

(b) (3 pts) Suppose Ω ⊆ X , i.e., Ω is a subset of X .

max
x⃗∈X

f(x⃗) ≤max
x⃗∈Ω

f(x⃗). (15)

⃝ True
⃝ False

Solution: False, the relaxed problem will always achieve a solution at least as optimal as the
constrained problem, so

max
x⃗∈X

f(x⃗) ≥max
x⃗∈Ω

f(x⃗). (16)

(c) (3 pts) Suppose maxx⃗∈X f(x⃗) < ∞, maxx⃗∈X g(x⃗) < ∞, and both maxima are achieved.

max
x⃗∈X

[
f(x⃗) + g(x⃗)

]
≤ max

x⃗∈X
f(x⃗) + max

x⃗∈X
g(x⃗). (17)

⃝ True
⃝ False

Solution: True.

(d) (3 pts) Suppose maxx⃗∈X f(x⃗) < ∞ and the maximum is achieved at a unique maximizer.

argmax
x⃗∈X

ef(x⃗) = argmax
x⃗∈X

f(x⃗). (18)

⃝ True
⃝ False

Solution: True, ex is a monotonically increasing function and composition with a monotonically
increasing function preserves order.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8
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7. Low Rank Approximation (3 pts)

Let A ∈ R3×4 be a matrix whose full SVD is

A =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

U

7 0 0 0
0 2 0 0
0 0 1 0


︸ ︷︷ ︸

Σ


1√
2 − 1√

2 0 0
0 0 1 0
0 0 0 1
1√
2

1√
2 0 0


︸ ︷︷ ︸

V ⊤

. (19)

Give the best rank-1 approximation to A, i.e., the solution to the problem

argmin
B∈R3×4

rk(B)≤1

∥A−B∥2F . (20)

No justification is necessary. No partial credit will be awarded.

NOTE : Please leave your answer in terms of a matrix product.

Solution:

B⋆ =

1 0 0
0 1 0
0 0 1


7 0 0 0
0 0 0 0
0 0 0 0




1√
2 − 1√

2 0 0
0 0 1 0
0 0 0 1
1√
2

1√
2 0 0

 (21)

=

10
0

[7] [ 1√
2 − 1√

2 0 0
]

(22)

= 7

10
0

[ 1√
2 − 1√

2 0 0
]
. (23)
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8. SOCP (12 pts)

Consider a matrix A ∈ Rm×n and vectors b⃗ ∈ Rm, c⃗ ∈ Rn and scalar d ∈ R. Consider the problem

min
z⃗∈Rn

(∥Az⃗ − b⃗∥2 − c⃗⊤z⃗ − d)2. (24)

(a) (8 pts) Suppose m = 1 and n = 1. Then z⃗ = z is just a scalar, and A, b⃗, c⃗ are also just scalars.
In particular, suppose A = 1, b⃗ = 1, c⃗ = 1, and d = 1. For these values, is the optimization
problem (24) convex? Justify your answer.
HINT: First, rewrite the problem with the given values. Then, consider evaluating the objective
function at z = 0 and z = 2.
Solution: The SOCP objective with the provided values is the function f : R → R defined by

f(z) .= (|z − 1| − z − 1)2. (25)

We check whether f is convex.
Let z1 = 0 and z2 = 2. Then

f(z1) = (|z1 − 1| − z1 − 1)2 = (|−1| − 1)2 = (1− 1)2 = 02 = 0 (26)

f(z2) = (|z2 − 1| − z2 − 1)2 = (|2− 1| − 2− 1)2 = (1− 2− 1)2 = (−2)2 = 4. (27)

Let λ = 1
2 . Then

f(λz1 + (1− λ)z2) = f(1) = (|1− 1| − 1− 1)2 = (−2)2 = 4. (28)

Thus there exists z1, z2 ∈ R and λ ∈ [0, 1] such that

f(λz1 + (1− λ)z2)︸ ︷︷ ︸
=4

> λf(z1) + (1− λ)f(z2)︸ ︷︷ ︸
= 1

2 ·0+
1
2 ·4=2

(29)

which is a direct violation of Jensen’s inequality for f . Thus f is not convex.

(b) (4 pts) The problem can be reformulated as

min
x⃗∈Rn+1

[
0⃗
1

]⊤
x⃗ (30)

s.t.
∥∥∥[A 0⃗

]
x⃗− b⃗

∥∥∥
2
−
[
c⃗

1

]⊤
x⃗− d ≤ 0 (31)

∥∥∥[A 0⃗
]
x⃗− b⃗

∥∥∥
2
−
[

c⃗

−1

]⊤
x⃗− d ≥ 0. (32)

where 0⃗ is the all-zeros vector of the appropriate dimension. Which constraint should be
dropped to make the problem an SOCP? Justify your answer.
Solution: We should drop the constraint (32) to make the problem an SOCP in standard form;
this is the case because SOCP constraints are affine (i.e., Ax⃗ = b⃗) or second-order cone (i.e.,
∥Fx⃗− g⃗∥2 − h⃗⊤x⃗− k ≤ 0).
Note that the original rpoblem was not convex, but the new problem without constraint (32) is
convex, so the two problems are not equivalent.
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9. Power Purchase (20 pts)

This problem describes a simplified version of the optimization problem on the power grid. Consider a
consumer who wants to consume d units (in kilo-Watt-hour (kWh)) of electrical energy. The consumer
can purchase this energy from a combination of electricity generators. Consider n generators indexed
by i = 1, 2, ..., n, and denote the energy output of the ith generator by xi. The cost of generating xi

units of energy is given by a generator specific cost fi(xi):

fi(xi) = aix
2
i + bixi (33)

where ai ≥ 0. Each generator has a constraint on the maximum energy it can produce, and this cap is
denoted by mi, i.e., 0 ≤ xi ≤ mi.

The consumer tries to purchase d units of energy at minimum cost by optimizing the amount of
energy xi purchased from each generator by solving:

min
x1,x2,...,xn

n∑
i=1

fi(xi) (34)

s.t.
n∑

i=1
xi = d

0 ≤ xi ≤ mi i = 1, ..., n.

(a) (3 pts) Choose the smallest class that problem (34) belongs to (LP/QP/SOCP/etc.).
You do not need to justify your answer.
Solution: This problem is a quadratic program (QP), since the objective is a quadratic function
of x⃗, and the constraints are affine functions of x⃗.

(b) (6 pts) We consider a specific case of the optimization problem (34):

min
x1,x2

(
x2
1 + 2x1

)
+
(3
2x

2
2

)
(35)

s.t. x1 + x2 = 1

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 1.

This problem is a specific instance of (34) with n = 2, d = 1, m1 = 2, and m2 = 1. What are
the optimal values of x1, x2? Show your work.
HINT: Try eliminating x2 by replacing it with 1−x1, solve the unconstrained optimization problem
and check back to see if the constraints are satisfied.
Solution: As notation, define

f(x⃗) .= x2
1 + 2x1 +

3
2x

2
2. (36)

Replace x2 = d− x1 = 1− x1. With this substitution, the objective function becomes

f̃(x1)
.= f(x1, 1− x1) =

5
2x

2
1 − x1 +

3
2 . (37)

The problem then becomes

min
x1∈R

5
2x

2
1 − x1 +

3
2 (38)

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11
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s.t. 0 ≤ x1 ≤ 2

0 ≤ 1− x1 ≤ 1.

The corresponding unconstrained problem is

min
x1∈R

f̃(x1) = min
x1∈R

(
5
2x

2
1 − x1 +

3
2

)
. (39)

The objective function is convex, so its minimum occurs when the gradient is 0:

0 = ∇x1 f̃(x⋆
1) (40)

= 5x⋆
1 − 1 (41)

=⇒ x⋆
1 = 1

5 (42)

=⇒ x⋆
2 = 1− x⋆

1 = 4
5 . (43)

These values of (x⋆
1, x

⋆
2) satisfy the original problem’s constraints, so they solve the original con-

strained problem as well.

(c) (6 pts) Consider a similar problem as in the previous subpart (b), this time with d = 2:

min
x1,x2

(
x2
1 + 2x1

)
+
(3
2x

2
2

)
(44)

s.t. x1 + x2 = 2

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 1.

What are the optimal values of x1, x2? Show your work.
HINT: Try eliminating x2 by replacing it with 2−x1. Check the function value at the critical points
of the problem, i.e., the points where the gradient is zero or undefined, points on the boundaries,
and ±∞.
Solution: We used this idea of checking critical points in Discussion 9.
Again, define

f(x⃗) = x2
1 + 2x1 +

3
2x

2
2. (45)

Replace x2 = d− x1 = 2− x1. With this substitution, the objective function becomes

f̃(x⃗) .= f(x1, 2− x1) =
5
2x

2
1 − 4x1 + 6 (46)

The problem then becomes

min
x1

5
2x

2
1 − 4x1 + 6 (47)

s.t. 0 ≤ x1 ≤ 2

0 ≤ 2− x1 ≤ 1.

Combining the constraints gives us the problem

min
x1∈R

5
2x

2
1 − 4x1 + 6 (48)

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12
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s.t. 1 ≤ x1 ≤ 2.

The objective function f̃ is convex; setting its to 0 and solving gives us the point (x1, x2) = (45 ,
6
5 ).

However, this violates the constraints.
We now check the function value at the critical points x1 ∈ {1, 2}, which will give us the answer
since the minimization problem is convex and the unconstrained minimization solution is infeasi-
ble. At x1 = 1 we have f̃(x1) = f̃(1) = 9

2 . At x1 = 2 we have f̃(x1) = f̃(2) = 8. Thus p⋆ = 9
2

and x⃗⋆ =
[
1
1

]
.

(d) (5 pts) Consider an instance of (34) where n = 2, two generators generate energy x1, x2 to fulfill
demand d, with associated costs f1(x1) and f2(x2) and capacities m1, m2:

min
x1,x2

f1(x1) + f2(x2) (49)

s.t. x1 + x2 = d

0 ≤ xi ≤ mi, i = 1, 2.

Consider the dual variables corresponding to the constraints as below:

Dual Variable Constraint

ν x1 + x2 = d

λ1 0 ≤ x1

λ2 x1 ≤ m1

λ3 0 ≤ x2

λ4 x2 ≤ m2

Write the complementary slackness conditions for this problem.
Suppose you solve the above problem (49), and find that your solution is such that 0 < x⋆

1 < m1

and 0 < x⋆
2 = m2. Which dual variables are necessarily equal to zero?

You may assume (without needing to prove) that strong duality holds.
Solution: The complementary slackness conditions are:

0 = λ⋆
1(−x⋆

1) (50)

0 = λ⋆
2(x⋆

1 −m1) (51)

0 = λ⋆
3(−x⋆

2) (52)

0 = λ⋆
4(x⋆

2 −m2). (53)

Since strong duality holds for this problem, the KKT conditions hold for (x⃗⋆, λ⃗⋆, ν⋆) where x⃗⋆ is
optimal for the primal problem (49) and λ⃗⋆ is optimal for the dual problem of (49).
By complementary slackness, we must have:

• −x⋆
1 < 0 so λ⋆

1 = 0.
• x⋆

1 −m1 < 0 so λ⋆
2 = 0.

• −x⋆
2 < 0 so λ⋆

3 = 0.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13



EECS 127/227AT Final
Print your student ID:

2022-12-20 13:48:10-08:00

• x⋆
2 −m2 = 0 so it is not necessarily true that λ⋆

4 = 0.

Finally, we remark that there are no slackness conditions for ν⋆, so it is not necessarily true that
ν⋆ = 0.

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14
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10. Proximal Operator (8 pts)

For a function h : Rn → R, define its proximal operator proxh : Rn → Rn as

proxh(x⃗)
.= argmin

u⃗∈Rn

(
h(u⃗) + 1

2 ∥x⃗− u⃗∥22
)
. (54)

Consider a special case where n = 1, i.e., we have a scalar problem, and h(x) .= λ |x| for a
constant λ ≥ 0. Let x0 ∈ R. Prove that

proxh(x0)
.= argmin

u∈R

(
λ |u|+ 1

2(x0 − u)2
)

(55)

is the soft-thresholding function that we’ve seen in the context of the LASSO problem,
i.e.,

argmin
u∈R

(
λ |u|+ 1

2(x0 − u)2
)

=


x0 + λ, if x0 < −λ

0, if − λ ≤ x0 ≤ λ

x0 − λ, if x0 > λ.

(56)

Solution: We aim to solve the problem

min
u∈R

(
λ |u|+ 1

2(x0 − u)2
)
. (57)

For notational convenience, define f, f+, f− : R → R by

f+(u)
.= λu+ 1

2(x0 − u)2 (58)

f−(u)
.= −λu+ 1

2(x0 − u)2 (59)

f(u) .=

f+(u) u ≥ 0

f−(u) u < 0.
(60)

Then f(u) is the objective function of the proximal minimization problem. Note that f is not differentiable
at u = 0, but is differentiable everywhere else.

Suppose u⋆ > 0. Then the first-order condition for optimality reads

0 = ∇uf(u⋆) (61)

= ∇uf+(u⋆) (62)

= λ− (u⋆ − x0) (63)

=⇒ u⋆ = x0 − λ. (64)

This shows that if u⋆ > 0 then u⋆ = x0 − λ. Thus u⋆ > 0 if and only if x0 > λ.
Now suppose u⋆ < 0. Then the first-order condition for optimality reads

0 = ∇uf(u⋆) (65)

= ∇uf−(u⋆) (66)

= −λ− (u⋆ − x0) (67)

=⇒ u⋆ = x0 + λ. (68)

© UCB EECS 127/227AT, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 15
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This shows that if u⋆ < 0 then u⋆ = x0 + λ. Thus u⋆ < 0 if and only if x0 < −λ.
If u⋆ ̸= 0 then |x0| > λ, so as a contrapositive, if |x0| ≤ λ then u⋆ = 0. Thus we have

proxh(x0) = u⋆ =


x0 + λ, if x0 < −λ

0, if − λ ≤ x0 ≤ λ

x0 − λ, if x0 > λ,

(69)

as desired.
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11. Modified SVM (31 pts)

Let Z ∈ Rn×d be a constant known matrix, and let C > 0 be a scalar. Consider the problem

p⋆ = min
w⃗,s⃗

1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 (70)

s.t. s⃗ ≥ 0⃗

s⃗ ≥ 1⃗− Zw⃗,

where w⃗ ∈ Rd and s⃗ ∈ Rn are the optimization variables, 0⃗ =
[
0 · · · 0

]⊤
∈ Rn is the vector of all

zeros, 1⃗ =
[
1 · · · 1

]⊤
∈ Rn is the vector of all ones. Strong duality holds for this problem.

(a) (3 pts) Choose the smallest class that problem (70) belongs to (LP/QP/SOCP/etc).
You do not need to justify your answer.
Solution: It is a QP – it has a quadratic objective and affine constraints.

(b) (4 pts) Are the KKT conditions for problem (70) necessary, sufficient or both neces-
sary and sufficient for global optimality?
NOTE : You may use (without needing to prove) the fact that strong duality holds.
Solution: The objective function is a convex quadratic and the constraints are affine (hence
convex) in w⃗ and s⃗, so the problem is convex.
Since the problem is convex, all functions involved are continuously differentiable, and strong
duality holds, the KKT conditions are both necessary and sufficient for optimality; that is, they
are equivalent to optimality conditions.

(c) (2 pts) Let α⃗ be the dual variable corresponding to the constraint s⃗ ≥ 0⃗. What is the
dimension (i.e., number of entries) of α⃗? You do not need to justify your answer.
Solution: α⃗ ∈ Rn since s⃗ ∈ Rn.

(d) (4 pts) Show that the Lagrangian L(w⃗, s⃗, α⃗, β⃗) of problem (70), where α⃗ is the dual variable
corresponding to the constraint s⃗ ≥ 0⃗, and β⃗ is the dual variable corresponding to the constraint
s⃗ ≥ 1⃗− Zw⃗, is equal to

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 − s⃗⊤(α⃗+ β⃗)− w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (71)

Solution: We have

L(w⃗, s⃗, α⃗, β⃗) = 1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 + α⃗⊤(−s⃗) + β⃗⊤(⃗1− Zw⃗ − s⃗) (72)

= 1
2 ∥w⃗∥22 +

C

2 ∥s⃗∥22 − s⃗⊤(α⃗+ β⃗)− w⃗⊤Z⊤β⃗ + 1⃗⊤β⃗. (73)

(e) (8 pts) Write the KKT conditions for problem (70). Show that if (w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) obey
the KKT conditions for problem (70), then

w⃗⋆ = Z⊤β⃗⋆ and s⃗⋆ = α⃗⋆ + β⃗⋆

C
. (74)
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HINT: For the first order/stationarity condition on the Lagrangian you will need to consider
partial derivatives with respect to both w⃗ and s⃗.
Solution: Let (w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) satisfy the KKT conditions. We have:

• Primal feasibility: s⃗⋆ ≥ 0 and s⃗⋆ ≥ 1⃗− Zw⃗⋆.
• Dual feasibility: α⃗⋆ ≥ 0⃗, β⃗⋆ ≥ 0⃗.
• Complementary slackness: α⋆

i s
⋆
i = 0 and β⋆

i (1− z⃗⊤i w⃗⋆ − s⋆i ) = 0 for each i.
• Stationarity: ∇w⃗L(w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) = 0⃗ and ∇s⃗L(w⃗⋆, s⃗⋆, α⃗⋆, β⃗⋆) = 0⃗. These become

0⃗ = w⃗⋆ − Z⊤β⃗⋆ (75)

0⃗ = Cs⃗⋆ − (α⃗⋆ + β⃗⋆) (76)

which rearrange to the claimed equalities.

(f) (5 pts) Compute the dual function of problem (70) as

g(α⃗, β⃗) .= L(w⃗⋆(α⃗, β⃗), s⃗⋆(α⃗, β⃗), α⃗, β⃗) (77)

where from the previous part we have that

w⃗⋆(α⃗, β⃗) = Z⊤β⃗ and s⃗⋆(α⃗, β⃗) = α⃗+ β⃗

C
. (78)

Your final expression for g(α⃗, β⃗) should not contain any maximizations, minimizations or terms
including w⃗, s⃗, w⃗⋆, or s⃗⋆. It should only contain α⃗, β⃗, C, Z, and numerical constants. Show your
work.
Solution: The dual function is

g(α⃗, β⃗) = L(w⃗⋆(α⃗, β⃗), s⃗⋆(α⃗, β⃗), α⃗, β⃗) (79)

= 1
2

∥∥∥w⃗⋆(α⃗, β⃗)
∥∥∥2
2
+ C

2

∥∥∥s⃗⋆(α⃗, β⃗)∥∥∥2
2
− s⃗⋆(α⃗, β⃗)⊤(α⃗+ β⃗)− w⃗⋆(α⃗, β⃗)⊤Z⊤β⃗ + 1⃗⊤β⃗ (80)

= 1
2

∥∥∥Z⊤β⃗
∥∥∥2
2
+ C

2

∥∥∥∥∥ α⃗+ β⃗

C

∥∥∥∥∥
2

2

−
(
α⃗+ β⃗

C

)⊤

(α⃗+ β⃗)− β⃗⊤ZZ⊤β⃗ + 1⃗⊤β⃗ (81)

= −1
2 β⃗

⊤ZZ⊤β⃗ − 1
2C

∥∥∥α⃗+ β⃗
∥∥∥2
2
+ 1⃗⊤β⃗. (82)

(g) (5 pts) Let α⃗⋆ and β⃗⋆ be optimal dual variables that solve the problem

d⋆
.= max

α⃗,β⃗≥0⃗
g(α⃗, β⃗). (83)

It turns out that α⃗⋆ can also be obtained by solving the quadratic program:

min
α⃗

∥∥∥α⃗+ β⃗⋆
∥∥∥2
2

(84)

s.t. α⃗ ≥ 0⃗.

Solve this quadratic program (84) directly and find α⃗⋆. Show your work.

HINT: The duality or KKT approaches are not recommended. Consider α⃗ =
[
α1 · · · αn

]⊤
,

and use the components of α⃗ to decompose the problem into n separate scalar problems. Solve
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each one by checking critical points; that is, points where the gradient is 0, the boundary of the
feasible set, and ±∞.
Solution: We have that ∥∥∥α⃗+ β⃗⋆

∥∥∥2
2
=

n∑
i=1

(αi + β⋆
i )2. (85)

Also, the α⃗ ≥ 0⃗ constraint is n separate constraints of the form αi ≥ 0. Thus, we can solve for
each αi separately as

α⋆
i ∈ argmin

αi≥0
(αi + β⋆

i )2. (86)

This problem is convex and so we can solve it by checking the critical points.

• The gradient (w.r.t. αi) is 0 if and only if αi = −β⋆
i . If β⋆

i > 0 then this solution is infeasible,
and if β⋆

i = 0 then αi = 0.
• The constraint boundary is αi = 0; this solution is feasible with objective value (β⋆

i )2.
• The limit αi → +∞ makes the objective value arbitrarily large, much larger than (β⋆

i )2. The
limit αi → −∞ makes the solution infeasible.

Thus the optimal solution for each scalar problem is α⋆
i = 0. Thus α⃗⋆ = 0⃗.
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12. Levenberg-Marquardt Regularization for Newton’s Method (26 pts)

Newton’s method often suffers from non-invertibility of the Hessian H(x⃗) = ∇2f(x⃗). One solution is to
use the modified Hessian H(x⃗) + µI, which is known as the Levenberg-Marquardt regularized Hessian.
In this problem, we explore how to find an appropriate µ given certain conditions on f . This problem
doesn’t depend on an understanding of Newton’s method, other than the first part.

(a) (3 pts) Let f : Rn → R be twice differentiable with Hessian H(x⃗). Let x⃗k be the kth iterate of
Newton’s method on f . Write the Newton’s method step for x⃗k+1 in terms of x⃗k. You
may assume H(x⃗k) is invertible.
Solution:

x⃗k+1 = x⃗k − [H(x⃗k)]−1∇f(x⃗k). (87)

(b) (5 pts) Show that for any symmetric matrix A ∈ Sn with λi{A} as the ith largest
eigenvalue of A:

∥A∥2F =
n∑

i=1
λi{A}2. (88)

HINT: Consider using the eigendecomposition or SVD of A.
Solution: Let A = UΛU⊤ be a spectral decomposition of A. Then

∥A∥2F =
∥∥UΛU⊤∥∥2

F
(89)

= ∥Λ∥2F (90)

=
n∑

i=1
λi{A}2, (91)

where in the second line we use the invariance of the Frobenius norm under multiplication by
orthogonal matrices.

(c) (5 pts) Let f : Rn → R be twice differentiable with Hessian H(x⃗). Let M > 0 be such that
∥H(x⃗)∥2F ≤ M2 for all x⃗ ∈ Rn. Use the result in part (b) to show that

−M ≤ λmin{H(x⃗)} for all x⃗ ∈ Rn, (92)

where we let λmin{H(x⃗)} denote the smallest eigenvalue of the symmetric Hessian matrix H(x⃗).
HINT: λmin{H(x⃗)}2 ≤

∑n
i=1 λi{H(x⃗)}2.

Solution: We use the trace relation for the Frobenius norm and (b) to get

M2 ≥ ∥H(x⃗)∥2F (93)

=
n∑

i=1
λi{H(x⃗)}2 (94)

≥ λmin{H(x⃗)}2. (95)

Taking square roots shows that λmin{H(x⃗)} ∈ [−M,M ], but we only need the lower bound to
show the claim.
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(d) (5 pts) Even though H(x⃗) may not be positive definite, we would like to find a small µ ≥ 0 such
that H(x⃗) +µI is positive definite for all x⃗ ∈ Rn. Fix ϵ > 0 and define the optimization problem:

µ⋆ = min
µ≥0

µ (96)

s.t. λi{H(x⃗) + µI} ≥ ϵ, for all i ∈ {1, . . . , n} and x⃗ ∈ Rn.

Show that the constraints in the above problem (96) are equivalent to

λmin{H(x⃗)} ≥ −µ+ ϵ, for all x⃗ ∈ Rn. (97)

Solution: For the feasible region, we use the shift property of eigenvalues to get

λi{H(x⃗) + µI} ≥ ϵ ∀i ∀x⃗ (98)

⇐⇒ λi{H(x⃗)}+ µ ≥ ϵ ∀i ∀x⃗ (99)

⇐⇒ λi{H(x⃗)} ≥ −µ+ ϵ ∀i ∀x⃗ (100)

⇐⇒ λmin{H(x⃗)} ≥ −µ+ ϵ (101)

where in the last step we use the fact that λmin is the most negative eigenvalue.

(e) (8 pts) From part (d), we consider the optimization problem with ϵ > 0:

µ⋆ = min
µ≥0

µ (102)

s.t. λmin{H(x⃗)} ≥ −µ+ ϵ, for all x⃗ ∈ Rn.

In class, you have seen how using slack variables can create an equivalent program:

max
x⃗∈X

f(x⃗) = min
c∈R

c (103)

s.t. f(x⃗) ≤ c for all x⃗ ∈ X .

Using this equivalence between formulations, solve for µ⋆. You may assume that there
exists x⃗0 ∈ Rn such that λmin{H(x⃗0)} = −M , i.e., the lower bound in part (c) is achieved with
equality at some point x⃗0.
Solution: We rearrange the constraints of problem to get

µ⋆ = min
µ≥0

µ

s.t. µ ≥ ϵ− λmin{H(x⃗)}, for all x⃗ ∈ Rn.
(104)

By the problem statement, this is equivalent to the problem

µ⋆ = max
x⃗∈Rn

[ϵ− λmin{H(x⃗)}] = ϵ− min
x⃗∈Rn

λmin{H(x⃗)} = ϵ− (−M) = ϵ+M. (105)

With this µ⋆, because it is feasible for problem (96), we have that all eigenvalues of H(x⃗)+µ⋆I ≥ ϵ

for all x⃗. Thus all eigenvalues of H(x⃗) + µ⋆I are positive, and the matrix is symmetric; hence it
is invertible, for every x⃗ ∈ Rn.
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