
EECS 127/227AT Optimization Models in Engineering UC Berkeley Fall 2022
Midterm

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I
will follow the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution:

2. Favorites. Any answer, as long as you write it down, will be given full credit. (2 pts)

(a) (1 pts) What’s your favorite building in Berkeley?
Solution: Any answer is fine.

(b) (1 pts) What is a hobby or activity that makes you happy?
Solution: Any answer is fine.
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3. Orthonormal Matrices (6 pts)

Prove the following identities.

(a) (3 pts) Let x⃗ ∈ Rn be a vector, and let U ∈ Rm×n, where m ≥ n, be an orthonormal matrix.
Prove the following equality:

∥Ux⃗∥2 = ∥x⃗∥2 . (1)

Solution: We have

∥Ux⃗∥22 = (Ux⃗)⊤(Ux⃗) = x⃗⊤U⊤Ux⃗ = x⃗⊤x⃗ = ∥x⃗∥22 . (2)

Here U⊤U = I as a consequence of U having orthonormal columns. (We’ve seen this property in
many places, such as Discussion 3 Problem 1 (a).)

(b) (3 pts) Let A ∈ Rn×n be a square matrix, and suppose A = QR is a QR decomposition of A.
Compute ∥R∥F in terms of ∥A∥F .
Solution: We have

∥A∥F = ∥QR∥F = ∥R∥F (3)

since Q is an orthonormal matrix (as seen in lecture, Discussion 1 Problem 2, and Homework 2
Problem 3), and the Frobenius norm is invariant under multiplication by a square orthonormal
matrix (as seen in many places such as Homework 3 Problem 3 part (b)).
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4. Vector Calculus (7 pts)

Let x⃗ ∈ Rn and A ∈ Rn×n. Let f(x⃗) .= ∥Ax⃗∥22.

(a) (4 pts) Calculate the gradient of f(x⃗) with respect to x⃗. Show your work.
Solution: Denote the ith row of A by a⃗⊤i . The ith element of Ax⃗ is a⃗⊤i x⃗, and f(x⃗) =

∑n
i=1(⃗a⊤i x⃗)2.

Then
∇f(x⃗) =

n∑
i=1

2(⃗a⊤i x⃗)∇x⃗(⃗a⊤i x⃗). (4)

For a vector c⃗ ∈ Rn, we know that∇x⃗(c⃗⊤x⃗) = ∇x⃗(
∑n

i=1 cixi) = c⃗. This means that∇x⃗(⃗a⊤i x⃗) = a⃗i.
We have

∇f(x⃗) =
n∑

i=1
2(⃗a⊤i x⃗)⃗ai. (5)

Note that a⃗⊤i x⃗ are the elements of the vector v⃗ = Ax⃗, and a⃗i are the columns of A⊤. Then∑n
i=1(⃗a⊤i x⃗)⃗ai is A⊤v⃗ =

∑n
i=1 via⃗i =

∑n
i=1(⃗a⊤i x⃗)⃗ai, which gives us

∇f(x⃗) = 2A⊤Ax⃗. (6)

For reference, look at Discussion 4 (Q1) and HW 4, Q3 subpart a) (ii).
Alternatively, you can also note that f(x⃗) = xTATAx, and therefore ∇f(x⃗) = 2A⊤Ax⃗, as done
in lecture.

(b) (3 pts) Calculate the Hessian of f(x⃗) .= ∥Ax⃗∥22 with respect to x⃗. You do not need to show
your work.
Solution: f(x⃗) = xTATAx. We considered the Hessian of xTQx in lecture, for general matrix Q.
The Hessian is ∇2f(x⃗) = ∇2A⊤Ax⃗ = 2A⊤A.
For reference, look at Discussion 4 (Q1) and HW 4, Q3 subpart a) (ii).
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5. Convexity (9 pts)

(a) (4 pts) Let f1, . . . , fk : Rn → R be convex functions. Prove that

the set S
.= {x⃗ ∈ Rn | fi(x⃗) ≤ 0 ∀i = 1, . . . , k} is convex. (7)

Solution: Fix x⃗, y⃗ ∈ S and λ ∈ [0, 1]. We aim to show that λx⃗+ (1− λ)y⃗ ∈ S.
For i ∈ {1, . . . , k}, since fi is convex we use the definition of convexity (seen in many places such
as Homework 6) for fi to get

fi(λx⃗+ (1− λ)y⃗) ≤ λ fi(x⃗)︸ ︷︷ ︸
≤0

+(1− λ) fi(y⃗)︸ ︷︷ ︸
≤0

(8)

≤ 0. (9)

Thus λx⃗+ (1− λ)y⃗ ∈ S. Since this is true for arbitrary x⃗, y⃗, and λ, it holds that S is convex.

(b) (5 pts) Let x⃗ =


x1
...
xn

. Prove that f : Rn → R given by f(x⃗) .= max1≤i≤n |xi| is convex.

Solution: There are many valid solutions, two of which we have listed below

i. Pointwise Maximum
The domain of f , dom(f) = Rn is convex since as shown in discussion 5 problem 1b, any
vector subspace is convex. We can write the absolute value as a max of two affine functions,

f(x) = max
1≤i≤n

|xi|

= max
1≤i≤n

max{xi,−xi}

= max
1≤i≤n,j∈{0,1}

(−1)jxi

Affine functions are convex since the satisfy Jensen’s inequality tightly, and since the pointwise
maximum of convex functions is convex (as seen in discussion 5 problem 2d), f(x) is convex
as well.

ii. Jensen’s Inequality
The domain of f , dom(f) = Rn is convex since as shown in discussion 5 problem 1b, any
vector subspace is convex. For any x⃗, y⃗ ∈ Rn and all θ ∈ [0, 1],

f(θx⃗+ (1− θ)y⃗) = max
1≤i≤n

|θxi + (1− θ)yi|

≤ max
1≤i≤n

|θxi|+ |(1− θ)yi|

≤ |θ| max
1≤i≤n

|xi|+ |1− θ| max
1≤i≤n

|yi|

= θf(x⃗) + (1− θ)f(y⃗)

The first inequality is due to the triangle inequality, and the second inequality is true since if
j = argmax1≤i≤n |θxi + (1− θ)yi|, then

f(θx⃗+ (1− θ)y⃗) = |θ |xj |+ (1− θ) |yj ||
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≤ θ |xj |+ (1− θ) |yj |

≤ θf(x⃗) + (1− θ)f(y⃗)
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6. Low-Rank Approximation (4 pts)

Let A ∈ R4×3 be a matrix whose full SVD is

A =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 − 1√
2

1√
2


︸ ︷︷ ︸

U


3 0 0
0 2 0
0 0 1
0 0 0


︸ ︷︷ ︸

Σ


1√
2 − 1√

2 0
0 0 1
1√
2

1√
2 0


︸ ︷︷ ︸

V ⊤

. (10)

Give the best rank-2 approximation to A, i.e., the solution to the problem

argmin
B∈R4×3

rk(B)≤2

∥A−B∥2F . (11)

No justification is necessary.

NOTE : Please leave your answer in terms of a matrix product.

Solution: By the Eckart-Young theorem, we know that a best rank-2 approximation to A is given by
the rank-2 truncated SVD U2Σ2V

⊤
2 , where U2 ∈ R4×2 is the first two columns of U , Σ2 ∈ R2×2 is the top

left 2 × 2 sub-block of Σ, and V2 ∈ R3×2 is the first two columns of V (we’ve seen this result several times
such as in lecture, the note, and Homework 4 Problem 1). Altogether we have

A2 =


1 0
0 1
0 0
0 0


[
3 0
0 2

][
1√
2 − 1√

2 0
0 0 1

]
(12)

as a solution to the problem. An alternate “full SVD”-esque solution is

A2 =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 − 1√
2

1√
2



3 0 0
0 2 0
0 0 0
0 0 0




1√
2 − 1√

2 0
0 0 1
1√
2

1√
2 0

 (13)

which multiplies to the same thing (i.e., our two definitions of A2 are equivalent, because the second definition
is the compact SVD form of the first definition). (We’ve seen this equivalence in many places, such as
Discussion 3 Problem 1.)
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7. Power Iteration and SVD (22 pts)

In this problem, we will discuss how to efficiently compute singular values and vectors using an algo-
rithm called “power iteration” that provides eigenvalues and eigenvectors. You do not need any prior
knowledge about the algorithm to complete this problem, other than the description below.

The “power iteration” algorithm, denoted by PowIter, operates as follows:

• For a symmetric positive semidefinite matrix B ∈ Sn+, PowIter(B) = (λ, v⃗), where λ is the
largest eigenvalue of B and v⃗ is a corresponding unit eigenvector.

• For a non-square, non-symmetric, or non-positive semidefinite matrix C, PowIter(C) = Error.

(a) (4 pts) Let A ∈ Rm×n be known to you. Explain how to use PowIter to compute a top
right singular vector, i.e., the first column v⃗1 of V in an SVD of A = UΣV ⊤, as well
as its corresponding singular value σ1. A 1-2 sentence algorithm description or pseudocode
will suffice.
Solution: Let r .= rk(A) and let A have outer product SVD A =

∑r
i=1 σiu⃗iv⃗

⊤
i (we’ve seen this

from lecture as well as Discussion 3 Problem 1). We know that

A⊤A =
(

r∑
i=1

σiu⃗iv⃗
⊤
i

)⊤( r∑
i=1

σiu⃗iv⃗
⊤
i

)
(14)

=
r∑

i=1

r∑
j=1

σiσj v⃗iu⃗
⊤
i u⃗j v⃗

⊤
j (15)

=
r∑

i=1

r∑
j=1

σ2
i v⃗iv⃗

⊤
i (16)

since the u⃗i are orthonormal. This matrix is PSD (as seen in many places such as Discussion 2
Problem 1 or Homework 2 Problem 5), and its eigenvectors v⃗i are the right singular vectors of A
by the above derivation, so

PowIter(A⊤A) = (σ2
1 , v⃗1) (17)

where σ2
1 is the squared top singular value of A. Taking the square root then gets the top singular

value of A.

(b) (6 pts) LetB ∈ Sn+ be a symmetric positive semidefinite matrix with eigenpairs (λ1, w⃗1), . . . , (λn, w⃗n)
where λ1 ≥ · · · ≥ λn ≥ 0. Prove that the matrix D

.= B−λ1w⃗1w⃗
⊤
1 is a symmetric positive

semidefinite matrix with eigenpairs (0, w⃗1), (λ2, w⃗2), . . . , (λn, w⃗n).
Solution: Since B has eigendecomposition

B =
n∑

i=1
λiw⃗iw⃗

⊤
i , (18)

(which we discussed in some places such as Homework 2 Problem 4), then

D = B − λ1w⃗1w⃗
⊤
1 = 0 · w⃗1w⃗

⊤
1 +

n∑
i=2

λiw⃗iw⃗
⊤
i =

n∑
i=2

λiw⃗iw⃗
⊤
i . (19)

Thus D has the desired eigenpairs. Moreover, D is a symmetric matrix, since

D⊤ = (B − λ1w⃗1w⃗1)⊤ = B⊤ − λ1w⃗1w⃗
⊤
1 = B − λ1w⃗1w⃗

⊤
1 = D, (20)
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and D is a PSD matrix since its eigenvalues are non-negative (for more details see Homework 2
Problem 5).

(c) (5 pts) Let A ∈ Rm×n and k ≤ min{m,n} be known to you. Explain how to use PowIter
to compute the top k right singular vectors of A, i.e., the first k columns of V in an
SVD A = UΣV ⊤, as well as their corresponding singular values. A 1-2 sentence algorithm
description or pseudocode will suffice.
NOTE : You may use the result from part (b), even if you haven’t proved it.
Solution: Start with

PowIter(A⊤A) = (σ2
1 , v⃗1), (21)

from which we can get the top singular value σ1 and top singular vector v⃗1. We note that
B2 = A⊤A − σ2

1 v⃗1v⃗
⊤
1 has eigenpairs (0, v⃗1), (σ2

2 , v⃗2), ... as shown in the previous problem part.
The top eigenvalue of B2 is σ2

2 , and we can perform

PowIter(B2) = PowIter(A⊤A− σ2
1 v⃗1v⃗

⊤
1 ) = (σ2

2 , v⃗2) (22)

to get second highest singular value σ2 and second singular vector v⃗2. We can continue doing this
operation, and get the kth singular value and vector by performing

PowIter(Bk) = PowIter
(
A⊤A−

k−1∑
i=1

σ2
i v⃗iv⃗

⊤
i

)
= (σ2

k, v⃗k), (23)

since Bk has eigenpairs (0, v⃗1), (0, v⃗2), ..., (0, v⃗k−1), (σ2
k, v⃗k), (σ2

k+1, v⃗k+1), ....

(d) (4 pts) Suppose that you know how to compute any number of right singular vectors of any
matrix using PowIter (regardless of whether or not you completed part (c)). Let A ∈ Rm×n

and r
.= rk(A) be known to you. Explain how to compute a basis for R

(
A⊤). A 1-2 sentence

solution will suffice.
Solution:
Solution 1:
We know that the first r .= rk(A) right singular vectors are a basis for R

(
A⊤) (as per Discussion

3 Problem 1 and other sources such as lecture), so applying the method of (c) to A generates the
appropriate r basis vectors.
Solution 2:
We can take the columns of A⊤, or in other words the rows of A, and run Gram-Schmidt on them.
This gives an orthonormal basis for R

(
A⊤) and some zero vectors, which should be discarded.

(e) (3 pts) Let A ∈ Rm×n be unknown to you (so you cannot compute its SVD or even use PowIter).
Suppose that you are given a basis for R

(
A⊤). Explain how to compute a basis for N (A).

A one sentence solution will suffice.
Solution: We use Gram-Schmidt to extend our basis for R

(
A⊤) to a basis for Rn; the remaining

vectors in that extended basis themselves form a basis for N (A), since R
(
A⊤)⊕N (A) = Rn by

the FTLA (which was discussed in lecture but can also be proved using properties of the SVD as
in Discussion 3 Problem 1 and other sources).
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8. Matrix Square Root (9 pts)

Let A,B ∈ Sn++ be symmetric positive definite matrices.

As B is symmetric, it has an orthonormal eigendecomposition B = V ΛV ⊤. Since B is positive definite,
we can define its matrix square root as follows B1/2 = V Λ1/2V ⊤, where Λ1/2 is a diagonal matrix whose
entries are the square roots of the corresponding entries of Λ. We denote the inverse of B1/2 as B−1/2.
Finally, define C

.= B−1/2AB−1/2.

Prove that the maximum eigenvalue of C is λ⋆, where

λ⋆ .= max
x̸⃗=0⃗

x⃗⊤Ax⃗

x⃗⊤Bx⃗
. (24)

Solution: Define y = B1/2x and hence B−1/2y = x (such substitutions but for orthogonal vectors
showed up in Homework 2 Q5a and Homework 3 Q4c). As B is positive definite, x ̸= 0 ⇐⇒ y ̸= 0. So we
can rewrite the optimization problem as

max
x ̸=0

x⊤Ax

x⊤Bx
= max

y ̸=0

(B−1/2y)⊤A(B−1/2y)
(B−1/2y)⊤B(B−1/2y)

= max
y ̸=0

y⊤B−1/2AB−1/2y

y⊤y

Which is the same as finding the maximum eigenvalue and eigenvector of C = B−1/2AB−1/2 due to the
definition via Rayleigh quotient (see lecture 4).
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9. Gradient Descent with A Wide Matrix (31 pts)

Consider a matrix X ∈ Rn×d with n < d and a vector y⃗ ∈ Rn, both of which are known and given to
you. Suppose X has full row rank.

(a) (3 pts) Consider the following problem:

Xw⃗ = y⃗ (25)

where w⃗ ∈ Rd is unknown. How many solutions does Equation (25) have? Justify your
answer.
Solution: Since y⃗ is in the range of X, this implies that there exists w⃗0 such that y⃗ = Xw⃗0. Now
let s⃗ be any non-zero vector in the null space of X (which exists since dim(N (X)) = d− n > 0),
and consider an arbitrary vector w⃗new = w⃗0 + ts⃗, where t ∈ R. Since Xw⃗new = Xw⃗0 = y⃗, we
conclude that there are infinitely many solutions. (definitions of range space and null space of a
matrix are seen in many places such as Discussion 3 Problem 2b and 2c. Minimum norm solutions
and that systems with wide full-row-rank matrices have infinitely many solutions was also covered
in Lecture. )

(b) (5 pts) Consider the minimum-norm problem

w⃗⋆ = argmin
w⃗∈Rd

Xw⃗=y⃗

∥w⃗∥22 . (26)

We know that the optimal solution to this problem is w⃗⋆ = X⊤(XX⊤)−1y⃗. Now let
X = UΣV ⊤ = U

[
Σ1 0

]
V ⊤ be the SVD of X, where Σ1 ∈ Rn×n. Recall that this is possible

because n < d and X is full row rank. Prove that w⃗⋆ is given by

w⃗⋆ = V

[
Σ−1

1
0

]
U⊤y⃗. (27)

All steps must be shown and justified for full credit.
Solution: By plugging in the SVD of X in the expression of w⃗⋆, we have

w⃗⋆ = X⊤(XX⊤)−1y⃗ (28)

= V

[
Σ1

0

]
U⊤

(
U
[
Σ1 0

]
V ⊤V

[
Σ1

0

]
U⊤

)−1

y⃗, (plugged in the SVD of X)

= V

[
Σ1

0

]
U⊤

(
U
[
Σ1 0

] [Σ1

0

]
U⊤

)−1

y⃗, (by V ⊤V = I)

= V

[
Σ1

0

]
U⊤U

([
Σ1 0

] [Σ1

0

])−1

U⊤y⃗, (by U−1 = U⊤)

= V

[
Σ1

0

]([
Σ1 0

] [Σ1

0

])−1

U⊤y⃗, (by U⊤U = I)

= V

[
Σ1

0

] (
Σ2

1
)−1

U⊤y⃗, (took the matrix product of
[
Σ1 0

] [Σ1

0

]
)

= V

[
Σ1

0

]
Σ−2

1 U⊤y⃗, (Σ1 is a square matrix and invertible)
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= V

[
Σ−1

1
0

]
U⊤y⃗. (29)

The concepts of substituting a matrix in an expression with its SVD form, and using the indentities
of the orthonormal matrices (the U and V matrices) to simplify terms are seen in many places
such as Discussion 1 problem 1b, and Discussion 3 Problem 1a. However, we need to be extra
careful when solving this problem since we are now dealing with a wide matrix with full row rank
instead of a tall matrix with full column rank which we saw more often in previous exercises. In
this problem, the diagonal matrix Σ =

[
Σ1 0

]
is a wide matrix, which is not invertible. Also

note that Σ⊤ =
[
Σ1

0

]
̸= Σ.

(c) (5 pts) Let η > 0, and I be the identity matrix of appropriate dimension. Using the SVD
X = U

[
Σ1 0

]
V ⊤, prove the following identity for all positive integers i > 0:

(I − ηX⊤X)i = V

(
I − η

[
Σ2

1 0
0 0

])i

V ⊤. (30)

All steps must be shown and justified for full credit.
Solution: We have

(I − ηX⊤X)i =
(
I − η(U

[
Σ1 0

]
V ⊤)⊤(U

[
Σ1 0

]
V ⊤)

)i
, (plugged in the SVD of X)

=
(
I − ηV

[
Σ1

0

]
U⊤U

[
Σ1 0

]
V ⊤

)i

, (took the transpose of U
[
Σ1 0

]
V ⊤)

=
(
I − ηV

[
Σ1

0

] [
Σ1 0

]
V ⊤

)i

, (by U⊤U = I)

=
(
I − ηV

[
Σ2

1 0
0 0

]
V ⊤

)i

, (took the matrix product of
[
Σ1

0

] [
Σ1 0

]
)

=
(
V V ⊤ − ηV

[
Σ2

1 0
0 0

]
V ⊤

)i

, (by I = V V ⊤)

=
(
V

(
I − η

[
Σ2

1 0
0 0

])
V ⊤

)i

, (combine the diagonal matrices)

= V

(
I − η

[
Σ2

1 0
0 0

])i

V ⊤, (by applying V ⊤V = I repeatedly)

The concepts of substituting a matrix in an expression with its SVD form, and using the indentities
of the orthonormal matrices (the U and V matrices) to simplify terms are seen in many places such
as Discussion 1 problem 1b, and Discussion 3 Problem 1a. The repeated application of similar
identity as V ⊤V = I is also practiced in Discussion 0 Problem 3a. However, again, we need to be
extra careful when solving this problem since we are now dealing with a wide matrix with full row
rank instead of a tall matrix with full column rank which we saw more often in previous exercises.

In this problem, the diagonal matrix Σ =
[
Σ1 0

]
is a wide matrix, so Σ⊤ =

[
Σ1

0

]
̸= Σ.
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(d) (9 pts) Recall that X ∈ Rn×d, and that we can write the SVD of X as X = U
[
Σ1 0

]
V ⊤. We

will use gradient descent to solve the minimization problem

min
w⃗∈Rd

1
2 ∥Xw⃗ − y⃗∥22 (31)

with step-size η > 0. Let w⃗0 = 0⃗ be the initial state, and w⃗k be the kth iterate of gradient descent.
Use the identity:

(I − ηX⊤X)i = V

(
I − η

[
Σ2

1 0
0 0

])i

V ⊤. (32)

to prove that after k steps, we have

w⃗k = η
k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U⊤y⃗. (33)

HINT: Remember to set w⃗0 = 0⃗.
Solution: With ∇w⃗f(w⃗) = X⊤(Xw⃗ − y), the gradient updates are of the form:

w⃗k+1 = w⃗k − η∇w⃗f(w⃗k) (34)

= (I − ηX⊤X)w⃗k + ηX⊤y⃗ (35)

=⇒ w⃗k = (I − ηX⊤X)kw⃗0 + η
k−1∑
i=0

(I − ηX⊤X)iX⊤y⃗ (36)

= η
k−1∑
i=0

(I − ηX⊤X)iX⊤y⃗. (37)

Using the identity given, we have

w⃗k = η
k−1∑
i=0

(I − ηX⊤X)iX⊤y⃗ (38)

= η
k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i

V ⊤ (V Σ⊤U⊤) y⃗ (39)

= η
k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i

Σ⊤U⊤y⃗ (40)

= η
k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U⊤y⃗. (41)

The concept of the problem is seen in many places such as Homework 6 Problem 5c, and Homework
7 Problem 4a.

(e) (9 pts) Now let 0 < η < 1
σ2
1
, where σ1 denotes the maximum singular value of X = U

[
Σ1 0

]
V ⊤.

Let w⃗k be given as

w⃗k = η
k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U⊤y⃗. (42)

and let w⃗⋆ be the minimum norm solution given as

w⃗⋆ = V

[
Σ−1

1
0

]
U⊤y⃗. (43)
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Prove that limk→∞ w⃗k = w⃗⋆.
HINT: You may use the following result without proof. When all eigenvalues of A ∈ Rn×n have
magnitude < 1, we have the identity (I −A)−1 = I +A+A2 + . . ..
Solution: We start with Equation (33) and simplify, obtaining

w⃗k = η
k−1∑
i=0

V

(
I − η

[
Σ2

1 0
0 0

])i [
Σ1

0

]
U⊤y⃗

= η
k−1∑
i=0

V

[
I − ηΣ2

1 0
0 I

]i [
Σ1

0

]
U⊤y⃗

= η
k−1∑
i=0

V

[
(I − ηΣ2

1)i 0
0 I

][
Σ1

0

]
U⊤y⃗

= η
k−1∑
i=0

V

[
(I − ηΣ2

1)iΣ1

0

]
U⊤y⃗

= ηV

{
k−1∑
i=0

[
(I − ηΣ2

1)iΣ1

0

]}
U⊤y⃗

= ηV

[∑k−1
i=0 (I − ηΣ2

1)iΣ1

0

]
U⊤y⃗.

Taking limits, we have

lim
k→∞

w⃗k = ηV

[∑∞
i=0(I − ηΣ2

1)iΣ1

0

]
U⊤y⃗

= ηV

[
(I − (I − ηΣ2

1))−1Σ1

0

]
U⊤y⃗, (applied the identity in the hint on I − ηΣ2

1)

= ηV

[
(ηΣ2

1)−1Σ1

0

]
U⊤y⃗, (Σ2

1 is a square matrix and invertible)

= ηV

[
1
ηΣ

−2
1 Σ1

0

]
U⊤y⃗

= V

[
Σ−1

1
0

]
U⊤y⃗

as desired. Here the infinite sum is evaluated as in the hint because the eigenvalues of I−ηΣ2
1 are

all in the interval (0, 1) ⊆ (−1, 1). Indeed, the eigenvalues of I − ηΣ2
1 are 1 − ησ2

i , where σi are
the entries of Σ1 and thus the nonzero singular values of X. Since σi > 0, we know 1− ησ2

i < 1.
Now, since η < 1

σ2
1
, we have 1− ησ2

i > 1− σ2
i

σ2
1
≥ 0. Thus the eigenvalues of I − ηΣ2

1 are contained
in (−1, 1) and the hint applies. The concept of this problem is seen in many places such as
Homework 6 problem 5d, and Homework 7 Problem 1b, 4b.

A common error, is to apply the hint directly on
(
I − η

[
Σ2

1 0
0 0

])
. Note that the eigenvalues of

I − η

[
Σ2

1 0
0 0

]
=
[
I − ηΣ2

1 0
0 I

]
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are in the interval (0, 1], which breaks the condition we made on the A matrix described in the
hint, all eigenvalues of A having magnitude strictly < 1.
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