
EECS 127/227AT Optimization Models in Engineering UC Berkeley Fall 2023
Final

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow the rules and do this
exam on my own.

IF YOU DO NOT COPY THE HONOR CODE AND SIGN YOUR NAME,
YOU WILL GET A 0 ON THE EXAM.

Solution:

2. SID and Exam Location (2 pts)

BEFORE THE EXAM STARTS, WRITE YOUR SID AT THE TOP OF FIRST PAGE AND LAST PAGE.
ALSO MENTION YOUR EXAM LOCATION AT THE TOP OF FIRST PAGE.
No extra time will be given for this task.

3. What is your favorite sport? Any answer, including no answer, will be given full credit. (2 pts)

Solution: Any answer is fine.
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4. Descent Methods (12 pts)

Consider the least squares problem
min
x⃗∈Rn

1
2∥Ax⃗ − b⃗∥2

2,

for some b⃗ ∈ Rn, A ∈ Rn×n such that A ̸= On×n.

(a) (4 pts) What is the most restrictive class of optimization problem that this problem belongs to from the following options?
No justification is required.

NOTE: In this problem, choosing “I don’t know” in a multiple choice question merits 1 point to discourage guessing. Picking
more than one of the choices will automatically get 0 points.

HINT: Recall that LP ⊆ QP ⊆ QCQP ⊆ SOCP ⊆ Convex optimization problems.

(1) LP

(2) QP

(3) QCQP

(4) SOCP

(5) Convex Optimization Problem

(6) I don’t know

Solution: QP.
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(b) (4 pts) Suppose

A =
[

1 2
3 4

]
, b⃗ =

[
4
6

]
.

Consider running gradient descent for the least squares problem

min
x⃗∈R2

1
2∥Ax⃗ − b⃗∥2

2,

with step size η = 1 and initialization x⃗(0) =
[

0
0

]
. What is the next iterate x⃗(1)? Please provide a numerical value for each

entry of x⃗(1).

HINT: Note that A⊤b⃗ =
[

22
32

]
, A⊤A =

[
10 14
14 20

]
, and A−1⃗b =

[
−2
3

]
.

Solution: The gradient is A⊤(Ax⃗ − b⃗). Evaluated at x⃗ =
[

0
0

]
, this is −A⊤b⃗ =

[
−22
−32

]
. So, the next iterate is

0⃗ − 1 ·

[
−22
−32

]
=

[
22
32

]
.
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(c) (4 pts) Suppose

A =
[

1 2
3 4

]
, b⃗ =

[
4
6

]
.

Consider running Newton’s method for the least squares problem

min
x⃗∈R2

1
2∥Ax⃗ − b⃗∥2

2,

with initialization x⃗(0) =
[

0
0

]
. What is the next iterate x⃗(1)? Please provide a numerical value for each entry of x⃗(1).

HINT: Note that A⊤b⃗ =
[

22
32

]
, A⊤A =

[
10 14
14 20

]
, and A−1⃗b =

[
−2
3

]
.

Solution: Newton’s Method converges in one iteration for this QP. So, the next iterate is x⃗(1) = A−1⃗b =
[

−2
3

]
, the

minimizer.
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5. Duality Trivia (20 pts)

Let f0, f1, · · · , fm : Rn → R be given. Suppose we have the primal problem

p⋆ = min
x⃗∈Rn

f0(x⃗)

s.t. fi(x⃗) ≤ 0, for each i ∈ {1, · · · , m},

where the dual function is g(λ⃗) = minx⃗∈Rn L(x⃗, λ⃗) for the Lagrangian L(x⃗, λ⃗). For all subparts in this problem, no justification
is required.

NOTE: In this problem, choosing “I don’t know” in a multiple choice question merits 1 point to discourage guessing. On the other
hand, “None of the above” means that we can’t say any of the above statements in generality (different scenarios could occur in
different examples). In each subpart, picking more than one of the choices will automatically get 0 points.

(a) (4 pts) If fi(x⃗) is a convex function for all i = 0, · · · , m, then what can we say about g(λ⃗)?
NOTE: The constant functions −∞ and +∞ are considered to be both convex and concave.

(1) g(λ⃗) is convex in λ⃗.

(2) g(λ⃗) is concave in λ⃗.

(3) g(λ⃗) is neither convex nor concave in λ⃗.

(4) None of the above.

(5) I don’t know.

Solution: g(λ⃗) is concave in λ⃗.

(b) (4 pts) If fi(x⃗) is neither convex nor concave, for all i = 0, · · · , m, then what can we say about g(λ⃗)?
NOTE: The constant functions −∞ and +∞ are considered to be both convex and concave.

(1) g(λ⃗) is convex in λ⃗.

(2) g(λ⃗) is concave in λ⃗.

(3) g(λ⃗) is neither convex nor concave in λ⃗.

(4) None of the above.

(5) I don’t know.

Solution: g(λ⃗) is concave in λ⃗.

(c) (4 pts) Suppose p⋆ = 0, and f0(x⃗) is linear, and fi(x⃗) are affine for i = 1, · · · , m. What is the strongest statement we can
make about d⋆?

(1) d⋆ = 0.

(2) d⋆ ≤ 0.

(3) d⋆ ≥ 0.

(4) None of the above.

(5) I don’t know.

Solution: d⋆ = 0 since it’s a feasible LP.

(d) (4 pts) Suppose p⋆ = 0, and fi(x⃗) is a convex function for each i ∈ {0, 1, · · · , m}. Moreover, there exists a vector c⃗ ∈ Rn

that satisfies maxi∈{1,··· ,m} fi(c⃗) = −3. What is the strongest statement we can make about d⋆?

(1) d⋆ = 0.
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(2) d⋆ ≤ 0.

(3) d⋆ ≥ 0.

(4) None of the above.

(5) I don’t know.

Solution: d⋆ = 0 since Slater’s condition holds for c⃗.

(e) (4 pts) Suppose p⋆ = 0, and fi(x⃗) is a convex quadratic function of x⃗ for each i ∈ {0, 1, · · · , m}. What is the strongest
statement we can make about d⋆?

(1) d⋆ = 0.

(2) d⋆ ≤ 0.

(3) d⋆ ≥ 0.

(4) None of the above.

(5) I don’t know.

Solution: d⋆ ≤ 0 by weak duality. It is a QCQP, and we cannot ascertain strong duality.
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6. Norms and Linear Algebra (12 pts)

Let A ∈ Rm×n with m ≤ n, with columns a⃗1 through a⃗n, i.e., A =
[
a⃗1 a⃗2 . . . a⃗n

]
. Suppose AA⊤ = Im×m, where Im×m

denotes the m × m identity matrix.

(a) (4 pts) Find the average of the squared norms of the columns of A, i.e. 1
n

∑n
i=1 ∥a⃗i∥2

2.

Solution: Note that
∑

i ∥a⃗i∥2
2 = ∥A∥2

F = tr(AA⊤) = m. Thus, the average of the squared norms is
m

n
.
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(b) (8 pts) Show that the norm of every column of A is at most 1, i.e. ∥a⃗i∥2 ≤ 1 for all i ∈ {1, · · · , n}.

HINT: Recall that the spectral norm of a matrix equals its largest singular value.

Solution: There are at least two solutions.

First solution: Note that A has m orthonormal rows since AA⊤ = Im. By the Basis Extension Theorem, there exist n − m

row vectors such that, together with the m rows of A, form an orthonormal basis for Rn. Let A′ ∈ Rn×n denote the resulting
matrix, which can be written in the form:

A′ =
[

a⃗1 a⃗2 . . . a⃗n

q⃗1 q⃗2 . . . q⃗n

]
where q⃗1, · · · , q⃗n ∈ Rn−m. Since A′ is an orthogonal matrix, the columns of A′ must have norm 1 since they are orthonormal.
So, 1 = ∥a⃗i∥2

2 + ∥q⃗i∥2
2, so ∥a⃗i∥2

2 ≤ 1.

Second solution: Since AA⊤ = Im×m, the matrix A has m singular values, each of which equals 1. Thus, for each
i ∈ {1, · · · , n}:

∥a⃗i∥2 ≤ ∥Ae⃗i∥2

∥e⃗i∥2
≤ max

v⃗∈Rn:
∥v⃗∥2≤1

∥Av⃗∥2

∥v⃗∥2
= ∥A∥2 = 1.
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7. Slater’s Condition (12 pts)

Consider the following optimization problem

min
x,y∈R

2x + y

s.t. x2 + y2 ≤ 1,

(x − 2)2 + y2 ≤ c,

for some parameter c > 0.

(a) (4 pts) If c = 4, does this problem satisfy Slater’s condition? Justify your answer.

Solution: Yes, e.g., the point
( 1

2 , 0
)

is strictly feasible.
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(b) (4 pts) If c = 1, what is the feasible set of the problem?

HINT: For each constraint, try drawing the set of all (x, y) ∈ R2 that satisfy the constraint.

Solution: In this case, the two inequality constraints correpsond to closed circles of radius 1 centered at (0, 0) and (2, 0),
respectively, so their intersection contains only the point (1, 0), i.e., the feasible set is {(1, 0)}.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 10



EECS 127/227AT Final 2023-12-13 05:19:15+08:00

(c) (4 pts) If c = 1, does the problem satisfy Slater’s condition? Justify your answer.

Solution: No, since the feasible set has empty relative interior.
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8. An Optimization Problem over Matrices (8 pts)

Let In×n denote the n × n identity matrix. Is the following a convex optimization problem?

min
X∈Rn×n

∥X − 2In×n∥2
F

s.t. e⃗⊤
i Xe⃗i ≥ 0, for each i ∈ {1, · · · , n},

tr(X) = n,

where tr(X) denotes the trace of the matrix X , ∥X − 2In×n∥F denotes the Frobenius norm of the matrix X − 2In×n, and for
each i ∈ {1, · · · , n} we have used e⃗i ∈ Rn to denote the vector with 1 in the i-th coordinate and 0 elsewhere. Justify your answer.

Solution: The objective function can be written as:

∥X − 2In×n∥2
F =

n∑
i=1

(Xii − 2)2 +
n∑

i=1

∑
j∈{1,··· ,n}\{i}

X2
ij

which is convex in the components of X . The first constraint equation states that the diagonal entries of X are all non-negative,
which is an affine inequality constraint in the components of X . Meanwhile, the second constraint is an affine equality in the
components of X . Thus, the constraint set is the intersection of two convex sets, and is therefore a convex set as well.
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9. Cones (12 pts)

Let K := {x⃗ = (x1, x2) ∈ R2 : x2 ≥ 2x1 ≥ 0}.

(a) (4 pts) Prove that K is a cone.

HINT: A set K is a cone if and only if for all x⃗ ∈ K and α ∈ R, α ≥ 0, we have αx⃗ ∈ K.

Solution: To prove that K is a cone we need to show that for all x⃗ ∈ K and α ∈ R, α ≥ 0, we have αx⃗ ∈ K. If x⃗ = (x1, x2)
then αx⃗ = (αx1, αx2). If x⃗ ∈ K then x2 ≥ 2x1 ≥ 0, which implies that αx2 ≥ 2αx1 ≥ 0, because α ≥ 0. But this implies
that αx⃗ ∈ K, which is what was to be shown.
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(b) (8 pts) Let K∗ denote the dual cone of K which is defined as follows

K∗ = {y⃗ = (y1, y2) ∈ R2 : y⃗⊤x⃗ ≥ 0 for all x⃗ ∈ K}.

Compute an expression for K∗ of the form

K∗ = {y⃗ = (y1, y2) ∈ R2 : a1y1 + a2y2 ≥ 0, b1y1 + b2y2 ≥ 0},

for some scalars a1, a2, b1, b2 ∈ R.

HINT: One can equivalently write K = {x⃗ = (x1, x2) ∈ R2 : x2 ≥ 2x1 ≥ 0} as K = {(x1, 2x1 + u) ∈ R2 : x1 ≥ 0, u ≥
0}.

Solution: By definition

K∗ = {y⃗ ∈ R2 : y⃗T x⃗ ≥ 0 for all x⃗ ∈ K}

= {y⃗ ∈ R2 : y1x1 + y2x2 ≥ 0 for all x2 ≥ 2x1 ≥ 0}
(a)= {y⃗ ∈ R2 : y1x1 + y2(2x1 + u) ≥ 0 for all x1 ≥ 0, u ≥ 0}

= {y⃗ ∈ R2 : (y1 + 2y2)x1 + y2u ≥ 0 for all x1 ≥ 0, u ≥ 0}
(v)= {y⃗ ∈ R2 : y1 + 2y2 ≥ 0, y2 ≥ 0}.

Here, in step (a) we have written x2 as 2x1 + u. In step (b) we have observed that if y1 + 2y2 < 0 then we can choose
x1 ≥ 0 so large that we have (y1 + 2y2)x1 + y2u < 0, while if y2 < 0, then we can choose u ≥ 0 so large that we have
(y1 + 2y2)x1 + y2u < 0.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 14
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10. Constrained Optimization (8 pts)

Consider the following optimization problem for fixed scalars α, β ∈ R:

min
x∈R

1
2(x − α)2 + βx

s.t. x ≥ 0.

Show that the optimal solution of this optimization problem is given by x∗ = max{0, α − β}.

HINT: Try first to solve the unconstrained problem minx∈R
1
2 (x − α)2 + βx.

Solution: Define f(x) = 1
2 (x − α)2 + βx. There are many ways to do it. One is to use KKT conditions. Other is to use geometric

arguments. We will follow the latter solution method here.

There are only two possible outcomes, either x∗ > 0 or x∗ = 0.

Consider a scenario when α − β ≤ 0. Then the gradient of objective function is

df(x)
dx

= x − (α − β),

which is always non-negative over the domain of the optimization problem x ≥ 0. Therefore the minimum value would occur at
0. That is, x∗ = 0.

Next, we consider the scenario when α − β > 0. We claim that x∗ = α − β. Observe that x∗ > 0 therefore from necessary and
sufficient conditions of optimization posits that df(x∗)

dx = 0 which is indeed the case.

This establishes that x∗ = max{0, α − β}.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 15



EECS 127/227AT Final 2023-12-13 05:19:15+08:00

11. Sum of Even Polynomials (12 pts)

Let a1, a2 ∈ R. Consider the optimization problem:

min
x1,x2∈R

(x1 + a1)4 + (x2 + a2)6

s.t.: x1 ≥ 0,

x2 ≥ 0,

x1 + x2 = 1.

The objective function and all the constraint functions are assumed to have domain R2. Also note that the constraints are defined
by affine functions.

(a) (4 pts) Show that the objective function is convex.

Solution: The feasible set is the intersection of sets defined by linear inequality constraints and linear equality constraints,
so it is a polyhedron, and is therefore a convex set. The Hessian of the objective function is a diagonal matrix with diagonal
entries 12(x1 + a1)2 and 30(x2 + a2)4 respectively, both of which are non-negative, so the Hessian is symmetric positive
semidefinite at all x⃗ ∈ R2. Hence the objective function is a convex function.
The problem is therefore a problem of minimizing a convex function over a polyhedron. This is a convex optimization
problem.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 16
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(b) (8 pts) We can write a Lagrangian for the problem in the form

L(x1, x2, λ1, λ2, ν) = (x1 + a1)4 + (x2 + a2)6 − λ1x1 − λ2x2 + ν(x1 + x2 − 1).

Here λ1 and λ2 are the dual variables corresponding to the two inequality constraints respectively, and ν is the dual variable
corresponding to the equality constraint. With this Lagrangian in mind, write down the KKT equations for the problem.

NOTE: It is not necessary to attempt to compute the dual objective function. Also, you are not asked to solve the KKT
equations, just to write them down.

Solution: The KKT conditions are comprised of four groups: (1) primal feasibility; (2) dual feasibility; (3) complementary
slackness; and (4) Lagrangian stationarity. Since the Lagrangian is convex in x⃗ for each fixed choice of the dual variables
(λ1, λ2, ν), the Lagrangian stationary condition can be written in the form

L(x1, x2, λ1, λ2, ν) = (x1 + a1)4 + (x2 + a2)6 − λ1x1 − λ2x2 + ν(x1 + x2 − 1),

where x⃗∗ and (λ∗
1, λ∗

2, ν∗) are the primal and dual variables being solved for in the KKT conditions.
The equations given by the KKT conditions are the following:
(1) From primal feasibility:

x∗
1 ≥ 0,

x∗
2 ≥ 0,

x∗
1 + x∗

2 = 1.

(2) From dual feasibility:

λ∗
1 ≥ 0,

λ∗
2 ≥ 0.

(3) From complementary slackness:

λ∗
1x∗

1 = 0,

λ∗
2x∗

2 = 0.

(4) From Lagrange stationarity:

4(a1 + x∗
1)3 − λ∗

1 + ν∗ = 0,

6(a2 + x∗
2)5 − λ∗

2 + ν∗ = 0.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 17
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12. Zero-Sum Games (22 pts)

Consider a matrix A ∈ Rm×n. Let

p∗ = min
x⃗∈Pm

max
y⃗∈Pn

x⃗⊤Ay⃗,

where Pm and Pn are unit simplices in Rm and Rn, respectively, given by

Pm =
{

x⃗ ∈ Rm :
m∑

i=1
xi = 1, xi ≥ 0 for each i ∈ {1, 2, ..., m}

}
,

Pn =

y⃗ ∈ Rn :
n∑

j=1
yj = 1, yj ≥ 0 for each j ∈ {1, 2, ..., n}

 .

Furthermore, for each j ∈ {1, 2, .., n}, let e⃗j denote the vector with 1 in its j-th coordinate and 0, otherwise. Define

En = {e⃗j : j ∈ {1, 2, ..., n}} .

(a) (6 pts) Show that for any x⃗ ∈ Pm, there exists e⃗j∗ ∈ En such that

x⃗⊤Ae⃗j∗ = max
y⃗∈Pn

x⃗⊤Ay⃗.

HINT: What kind of optimization problem is maxy⃗∈Pn
x⃗⊤Ay⃗?

Solution: Note that for any fixed x⃗ ∈ Pm the optimization problem maxy⃗∈Pn
x⃗⊤Ay⃗ is a linear program over a simplex.

Since simplex is a polytope, we know that the optimal solution will be attained at one of the vertices and the set of vertices
of Pn coincide with En.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 18
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(b) (8 pts) Show that

min
x⃗∈Pm

max
y⃗∈Pn

x⃗⊤Ay⃗ = min
x⃗∈Pm

max
e⃗j∈En

x⃗⊤Ae⃗j .

HINT: Try to show that minx⃗∈Pm
maxy⃗∈Pn

x⃗⊤Ay⃗ ≤ minx⃗∈Pm
maxe⃗j∈En

x⃗⊤Ae⃗j , and minx⃗∈Pm
maxy⃗∈Pn

x⃗⊤Ay⃗ ≥
minx⃗∈Pm

maxe⃗j∈En
x⃗⊤Ae⃗j .

Solution: Observe that En ⊆ Pn. Therefore, for every x⃗ ∈ Pm,

max
y⃗∈En

x⃗⊤Ay⃗ ≤ max
y⃗∈Pn

x⃗⊤Ay⃗.

Moreover from part (a) we know that for every x⃗ ∈ Pm there exists j∗ ∈ {1, 2, ..., n} such that

max
y⃗∈Pn

x⃗⊤Ay⃗ = x⃗⊤Ae⃗j∗ ≤ max
y⃗∈En

x⃗⊤Ay⃗,

where last inequality holds because e⃗j∗ ∈ En.

We can therefore conclude that for any x⃗ ∈ Pm,

max
y⃗∈Pn

x⃗⊤Ay⃗ = max
y⃗∈En

x⃗⊤Ay⃗.

The claim in the problem follows by taking a minimization over x⃗ on both sides of the above equation.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 19



EECS 127/227AT Final 2023-12-13 05:19:15+08:00

(c) (8 pts) Formulate the optimization problem minx⃗∈Pm
maxe⃗j∈En

x⃗⊤Ae⃗j as a linear program.

HINT: The set En contains only finitely many vectors.

Solution: Note that we can represent the optimization problem minx⃗∈Pm
maxe⃗j∈En

x⃗⊤Ae⃗j as

min
x⃗∈Rm,v∈R

v (1)

v ≥
m∑

i=1
xiAij ∀ j ∈ {1, 2, 3.., n}, (C1)

d∑
i=1

xi = 1, (C2)

xi ≥ 0, ∀ i ∈ {1, 2, 3.., m}. (C3)

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 20
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13. Gradient Descent for Convex Functions (12 pts)

Let f : R → R be a differentiable function, with dom(f) = R. We carry out one step of gradient descent on f , with step size 1
4 ,

starting at x0 ∈ R. This leads us to

x1 = x0 − 1
4

df

dx
(x0).

Suppose the function g(x) := 2x2 − f(x) is convex. Show that

f(x1) ≤ f(x0) − 1
8

(
df

dx
(x0)

)2
.

NOTE: You may not assume that either f or g satisfies any property other than the ones mentioned above.

Solution: We have dg
dx (x0) = 4x0 − df

dx (x0). Since g is convex, we have

g(x1) ≥ g(x0) + (x1 − x0) dg

dx
(x0),

which reads
2x2

1 − f(x1) ≥ 2x2
0 − f(x0) − 1

4(4x0 − df

dx
(x0)) df

dx
(x0),

i.e.
2(x0 − 1

4
df

dx
(x0))2 − f(x1) ≥ 2x2

0 − f(x0) − 1
4(4x0 − df

dx
(x0)) df

dx
(x0),

i.e.
1
8( df

dx
(x0))2 − f(x1) ≥ −f(x0) + 1

4( df

dx
(x0))2,

i.e.
f(x1) ≤ f(x0) − 1

8( df

dx
(x0))2,

which is what was to be shown.
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14. Second-Order Cone Programming (14 pts)

Fix A ∈ Rm×n, y⃗ ∈ Rm, and λ, µ > 0. Consider the following modified version of the LASSO problem with both an ℓ2

regularization term and an ℓ1 regularization term, i.e.,

min
x⃗∈Rn

∥Ax⃗ − y⃗∥2
2 + µ∥x⃗∥2 + λ∥x⃗∥1.

We will show that this problem can be equivalently written as an SOCP.

NOTE: The ℓ2 regularization term is given as µ∥x⃗∥2, rather than µ∥x⃗∥2
2.

(a) (4 pts) Find vectors a⃗, b⃗ ∈ Rn and scalars u, v ∈ R (each of them in terms of µ and λ) such that the optimization problem is
equivalent to solving

min
x⃗,r⃗∈Rn

t,p∈R

a⃗⊤x⃗ + ut + vp + b⃗⊤r⃗

s.t. ∥Ax⃗ − y⃗∥2
2 ≤ t,

∥x⃗∥2 ≤ p,

|xi| ≤ ri, ∀i ∈ {1, . . . , n}.

Solution: Set a⃗ = 0⃗, u = 1, v = µ, b⃗ = λ1⃗.

© UCB EECS 127/227AT, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 22



EECS 127/227AT Final 2023-12-13 05:19:15+08:00

(b) (6 pts) Find a second-order cone constraint over the variables (x⃗, t) that is equivalent to the constraint ∥Ax⃗ − y⃗∥2
2 ≤ t.

HINT: You may use without proof the fact that for any z⃗ ∈ Rn and t ∈ R

∥z⃗∥2
2 ≤ t if and only if

∥∥∥∥∥
[

2
√

2z⃗

1 − 2t

]∥∥∥∥∥
2

≤ 1 + 2t.

Solution: Using the hint, we can write

{(x⃗, t) ∈Rn+1 : ∥Ax⃗ − y⃗∥2
2 ≤ t}

=
{

(x⃗, t) ∈ Rn+1 :

∥∥∥∥∥
[

2
√

2(Ax⃗ − y⃗)
1 − 2t

]∥∥∥∥∥
2

≤ 1 + 2t

}

=
{

(x⃗, t) ∈ Rn+1 :

∥∥∥∥∥
[

2
√

2A 0
0 −2

] [
x⃗

t

]
+

[
−2

√
2y⃗

1

]∥∥∥∥∥
2

≤ 1 + 2t

}
,

which is a cone over the variables (x⃗, t).
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(c) (4 pts) For each i ∈ {1, . . . , n}, find a second-order cone constraint over the variables (xi, ri) that is equivalent to the
constraint |xi| ≤ ri.

NOTE. We know that ∥x∥2 ≤ t is a second-order cone constraint. Using this and parts (a)-(c), we can write the optimization
problem

min
x⃗∈Rn

∥Ax⃗ − y⃗∥2
2 + µ∥x⃗∥2 + λ∥x⃗∥1,

as an SOCP. You are not expected to do this.

Solution: The set {(xi, ri) ∈ R2 : |xi| ≤ ri} is a cone over the variables (xi, ri) because it can also be written as
{(xi, ri) ∈ R2 : ∥xi∥2 ≤ ri}.
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15. Support Vector Machines (12 pts)

Recall the maximum margin support vector machine problem:

min
w⃗∈Rk,b∈R

1
2∥w⃗∥2

2

s.t. yi(w⃗⊤x⃗i + b) ≥ 1 ∀i ∈ {1, . . . , n},

where the data points (x⃗i, yi), with features x⃗i ∈ Rk and labels yi ∈ {+1, −1} for i ∈ {1, . . . , n}, are given.

(a) (8 pts) Consider the pairs of features x⃗i ∈ R2 and labels yi ∈ {+1, −1} given in Figure 1. The maximum margin hyperplane
for this data along with the support vectors are depicted in Figure 2. Find the vector w⃗ and scalar b that solve this problem.

Index i Features (xi1, xi2) ∈ R2 Label yi ∈ {+1, −1}
1 (1, 1) +1
2 (3, 4) +1
3 (3, 5) +1
4 (4, 0) −1
5 (5, 1) −1
6 (6, 6) −1

Figure 1: Data points and their labels
1 2 3 4 5 6 7

1

2

3

4

5

6

7

xi1

xi2 +1
−1

Figure 2: Maximum margin hyperplane and support vectors

HINT: Note that the constraints in the maximum margin support vector machine problem must be satisfied with equality at
the support vectors.

HINT: You are likely to find at least one of these two calculations to be useful:3 4 1
4 0 1
6 6 1


−1

=

−3/7 1/7 2/7
1/7 −3/14 1/14
12/7 3/7 −8/7

 ,

1 1 1
3 5 1
5 1 1


−1

=

−1/4 0 1/4
−1/8 1/4 −1/8
11/8 −1/4 −1/8

 .

Solution: Using the hint, we note that the constraints in the maximum margin support vector machine problem are satisfied
with equality at the support vectors. The support vectors are given in Figure 2 by (3, 4)⊤, which is classified as +1, and
(4, 0)⊤, (6, 6)⊤, which are classified as −1. This gives rise to the following equations in terms of the variables w, b:

1((3, 4)⊤w + b) = 1,

−1((4, 0)⊤w + b) = 1,

−1((6, 6)⊤w + b) = 1.

Putting these equations in matrix form gives us:3 4 1
4 0 1
6 6 1


w1

w2

b

 =

 1
−1
−1

 .
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The inverse of the matrix on the left hand side is provided to us in the hint, which gives the solution:w1

w2

b

 =

3 4 1
4 0 1
6 6 1


−1  1

−1
−1

 =

−3/7 1/7 2/7
1/7 −3/14 1/14
12/7 3/7 −8/7


 1

−1
−1

 .

This gives w∗
1 = −6

7 , w∗
2 = 2

7 , b∗ = 17
7 .
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(b) (4 pts) Now, consider the pairs of features x⃗i ∈ R2 and labels yi ∈ {+1, −1} given in Figure 3, and depicted visually in
Figure 4:

Index i Features (xi1, xi2) ∈ R2 Label yi ∈ {+1, −1}
1 (1, 1) +1
2 (4.5, 1) +1
3 (4, 6) +1
4 (4, 0) −1
5 (4, 2) −1
6 (5, 1) −1

Figure 3: Data points and their labels
1 2 3 4 5 6 7

1

2

3

4

5

6

7

xi1

xi2 +1
−1

Figure 4: Visual depiction of data points and labels

If possible, find a separating hyperplane that solves the maximum margin support vector machine problem with this data, or
provide a justification why such a hyperplane cannot be found.

Solution: Such a hyperplane cannot be found because the data are not linearly separable. This is because the point (4.5, 1),
which is classified as +1, can be written as a convex combination of the points classified as −1:[

4.5
1

]
= 1

4

[
4
0

]
+ 1

4

[
4
2

]
+ 1

2

[
5
1

]
.
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