1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow the rules and do this exam on my own.

IF YOU DO NOT COPY THE HONOR CODE AND SIGN YOUR NAME, YOU WILL GET A 0 ON THE EXAM.

Solution:

2. SID (3 pts)

WHEN THE EXAM STARTS, WRITE YOUR SID AT THE TOP OF EVERY PAGE. No extra time will be given for this task.

- 3. Favorites. Any answer, as long as you write it down, will be given full credit. (2 pts)
 - (a) (1 pts) What's your favorite restaurant in Berkeley?Solution: Any answer is fine.
 - (b) (1 pts) What's some music that makes you happy?Solution: Any answer is fine.

PRINT your student ID: _____

EECS 127/227AT Midterm

4. Fun with Rank (12 pts)

Consider two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Let $\mathcal{R}(A)$ denote the range (i.e. column) space of the matrix A.

(a) (4 pts) Prove that $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$.

HINT: $\mathcal{R}(A) = \{ \vec{y} : \vec{y} = A\vec{x} \text{ for some } \vec{x} \in \mathbb{R}^n \}.$

Solution: To solve this problem, it is sufficient to show that if $\vec{y} \in \mathcal{R}(AB)$ then $\vec{y} \in \mathcal{R}(A)$. Consider arbitrary $\vec{y} \in \mathcal{R}(AB)$ then there exists a $\vec{z} \in \mathbb{R}^p$ such that $\vec{y} = AB\vec{z}$. Define $\vec{w} \in \mathbb{R}^n$ to be $\vec{w} = B\vec{z} \in \mathbb{R}^n$. Consequently, it holds that $\vec{y} = A\vec{w}$. Therefore, we can conclude that $\vec{y} \in \mathcal{R}(A)$.

Alternate Solution: An alternate solution is to note that we can represent the product matrix AB as

$$AB = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \dots & A\vec{b}_p \end{bmatrix},$$

where $\vec{b}_1, \vec{b}_2, ..., \vec{b}_p \in \mathbb{R}^n$ are the columns of matrix *B*.

Recall that the range space of any matrix is the span of its columns. Therefore, $\mathcal{R}(AB) = \text{span}\{A\vec{b_1}, A\vec{b_2}, ..., A\vec{b_p}\}$. Since $A\vec{b_i} \in \mathcal{R}(A)$ for every $i \in \{1, 2, ..., p\}$, it holds that $\text{span}\{A\vec{b_1}, A\vec{b_2}, ..., A\vec{b_p}\} \subseteq \mathcal{R}(A)$.

(b) (4 pts) Prove that the following inequality holds:

$$0 \le \operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}.$$

HINT: Recall that the rank of a matrix is the dimension of its range space.

HINT: You may use the result of part (a), and the fact that the rank of any matrix is the same as the rank of its transpose.

Solution: Recall that rank of any matrix is the dimension of the column space of that matrix. Therefore the rank has to be always non-negative. This proves the lower bound in the problem.

To show the upper bound, it is enough to show that

$$\operatorname{rank}(AB) \le \operatorname{rank}(A); \tag{P1}$$

$$\operatorname{rank}(AB) \le \operatorname{rank}(B). \tag{P2}$$

First, we show (P1). This is a consequence of part (a) where we showed that $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$. Therefore

$$\operatorname{rank}(AB) = \dim(\mathcal{R}(AB))$$
$$\leq \dim(\mathcal{R}(A)) = \operatorname{rank}(A).$$

Next, we show (P2). Observe that

$$\operatorname{rank}(AB) = \operatorname{rank}((AB)^{\top})$$
$$= \operatorname{rank}(B^{\top}A^{\top})$$
$$\leq \operatorname{rank}(B^{\top})$$
$$= \operatorname{rank}(B),$$

where \star is due to the fact that the rank of any matrix is same as the rank of its transpose and $\star\star$ is due to (P1) by replacing A with B^{\top} and B with A^{\top} .

(c) (4 pts) Give an example of matrices A, B such that $rank(A) \neq 0, rank(B) \neq 0$ but rank(AB) = 0, by finding suitable values of $x, y, z \in \mathbb{R}$ in the following matrices:

$$A = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & z \end{bmatrix}.$$

Solution: In general, we can show that any solution with x + y = 0, $x \neq 0$, z = 0 will work. To do this, we multiply AB and get:

$$AB = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & z \end{bmatrix} = \begin{bmatrix} x+y & yz \\ 0 & 0 \end{bmatrix}.$$

For this to have rank zero, we need x + y = 0 and yz = 0. Also, for A to have nonzero rank, we need at least one of x and y to be nonzero.

For a specific example, consider the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}.$$
 (1)

Note that rank(A) = rank(B) = 1. But

$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Therefore, rank(AB) = 0. This corresponds to x = 1, y = -1, z = 0.

PRINT your student ID: _____

EECS 127/227AT Midterm

5. Compact SVD (4 pts)

Consider two sets of orthonormal vectors $\{\vec{p_1}, \vec{p_2}\} \subset \mathbb{R}^m$ with $\vec{p_1} \perp \vec{p_2}$, and $\{\vec{q_1}, \vec{q_2}\} \subset \mathbb{R}^n$ with $\vec{q_1} \perp \vec{q_2}$. Let $C \in \mathbb{R}^{m \times n}$ be defined as

$$C = \vec{p}_1 \vec{q}_1^{\top} + \frac{1}{2} \vec{p}_2 \vec{q}_2^{\top}.$$

Write the compact SVD representation of matrix C in terms of $\vec{p_1}, \vec{p_2}, \vec{q_1}, \vec{q_2}$. That is, compute the SVD matrices $U_r \in \mathbb{R}^{m \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{n \times r}$, such that $C = U_r \Sigma_r V_r^\top$.

Solution: The compact SVD representation of matrix C in terms of $\vec{p}_1, \vec{p}_2, \vec{q}_1, \vec{q}_2$ with all three matrices is given by:

$$C = \begin{bmatrix} \vec{p}_1 & \vec{p}_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \vec{q}_1^\top \\ \vec{q}_2^\top \end{bmatrix}.$$

6. Exploring SVD, Least Squares, and Min-Norm (13 pts)

(a) (4 pts) Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank r > 0. Consider the equation $A\vec{x} = \vec{b}$ for some $\vec{b} \in \mathcal{R}(A)$. Show that $\vec{x}_0 = V_r \Sigma_r^{-1} U_r^{\top} \vec{b}$ is a solution to $A\vec{x} = \vec{b}$, where the compact SVD of A is $A = U_r \Sigma_r V_r^{\top}$. Show your work.

HINT: Remember that $U_r U_r^{\top}$ isn't necessarily the identity, but $U_r U_r^{\top} \vec{d} = \vec{d}$ for any $\vec{d} \in \mathcal{R}(U_r)$.

Solution: One way is to note that $A\vec{x}_0 = U_r \Sigma_r V_r^\top V_r \Sigma_r^{-1} U_r^\top \vec{b} = U_r \Sigma_r \Sigma_r^{-1} U_r^\top \vec{b} = U_r U_r^\top \vec{b} = \vec{b}$, where we used the fact that V_r has orthonormal columns (so $V_r^\top V_r = I$). The last step involves noting that the columns of U_r span $\mathcal{R}(A)$ and $\vec{b} \in \mathcal{R}(A)$, so $\vec{b} = U_r \vec{z}$ for some \vec{z} . Then, $U_r U_r^\top \vec{b} = U_r U_r^\top U_r \vec{z} = U_r \vec{z} = \vec{b}$.

Another way is to see that $Ax = U_r \Sigma_r V_r^{\top} x = b$. Left multiplying on both sides by U_r^{\top} and using the fact that $U_r^{\top} U_r = I$, we have $\Sigma_r V_r^{\top} x = U_r^{\top} b$. Once again left multiplying on both sides by Σ_r^{-1} , we have $V_r^{\top} x = \Sigma_r^{-1} U_r^{\top} b$. Now, we substitute $x = x_0 = V_r \Sigma_r^{-1} U_r^{\top} b$ to see that $V_r^{\top} V_r \Sigma_r^{-1} U_r^{\top} b = \Sigma_r^{-1} U_r^{\top} b$, and using $V_r^{\top} V_r = I$ shows the left hand side and right hand side are equal.

(b) (4 pts) Let $A \in \mathbb{R}^{m \times n}$ be a matrix with m < n and rank r > 0, and let $\vec{b} \in \mathcal{R}(A)$.

Also, let the compact and full SVD representations of A be, respectively,

$$\underbrace{A}_{m \times n} = \underbrace{U_r}_{m \times r} \underbrace{\Sigma_r}_{r \times r} \underbrace{V_r^{\top}}_{r \times n}, \qquad A = \begin{bmatrix} U_r & U_{m-r} \end{bmatrix} \underbrace{\begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix}}_{m \times n} \begin{bmatrix} V_r^{\top} \\ V_{n-r}^{\top} \end{bmatrix},$$

where $U_{m-r} \in \mathbb{R}^{r \times (m-r)}, V_{n-r} \in \mathbb{R}^{r \times (n-r)}$. Show that $V_r \Sigma_r^{-1} U_r^\top \vec{b} + V_{n-r} \vec{z}$ is a solution to $A\vec{x} = \vec{b}$, for any $\vec{z} \in \mathbb{R}^{n-r}$.

Solution: We plug in the given solution into $A\vec{x}$, yielding $A(V_r\Sigma_r^{-1}U_r^{\top}\vec{b} + V_{n-r}\vec{z}) = AV_r\Sigma_r^{-1}U_r^{\top}\vec{b} + AV_{n-r}\vec{z} = U_r\Sigma_rV_r^{\top}V_r\Sigma_r^{-1}U_r^{\top}\vec{b} + U_r\Sigma_r(V_r^{\top}V_{n-r})\vec{z}$. Then, we get $U_r\Sigma_r\Sigma_r^{-1}U_r^{\top}\vec{b} = U_rU_r^{\top}\vec{b} = \vec{b}$, where we used the fact that V_r has orthonormal columns (so $V_r^{\top}V_r = I$, $V_r^{\top}V_{n-r} = 0$).

(c) (5 pts) Again, let $A \in \mathbb{R}^{m \times n}$ be a matrix with m < n and rank r, and let $\vec{b} \in \mathcal{R}(A)$.

Also, let the compact and full SVD representations of A be, respectively,

$$\underbrace{A}_{m \times n} = \underbrace{U_r}_{m \times r} \underbrace{\Sigma_r}_{r \times r} \underbrace{V_r^{\top}}_{r \times n}, \qquad A = \begin{bmatrix} U_r & U_{m-r} \end{bmatrix} \underbrace{\begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix}}_{m \times n} \begin{bmatrix} V_r^{\top} \\ V_{n-r}^{\top} \end{bmatrix},$$

where $U_{m-r} \in \mathbb{R}^{r \times (m-r)}, V_{n-r} \in \mathbb{R}^{r \times (n-r)}.$

Let \vec{x}^{\star} be the solution to the following problem:

$$\vec{x}^{\star} = \operatorname*{argmin}_{\vec{x} \in \mathbb{R}^n} \|\vec{x}\|_2^2 \quad \text{s.t.} \quad A\vec{x} = \vec{b}.$$

Find \vec{x}^{\star} and justify your answer.

HINT: You may use the fact that $\{V_r \Sigma_r^{-1} U_r^\top \vec{b} + V_{n-r} \vec{z} : \vec{z} \in \mathbb{R}^{n-r}\}$ is the set of all solutions to $A\vec{x} = \vec{b}$, without proof. **Solution:** Using the fact in the hint, we reduce our problem to

$$\min_{\vec{z} \in \mathbb{R}^{n-r}} \| V_r \Sigma_r^{-1} U_r^{\top} \vec{b} + V_{n-r} \vec{z} \|_2^2$$

We can expand the inner product to get:

$$\min_{\vec{z}\in\mathbb{R}^{n-r}}\left(\|V_r\Sigma_r^{-1}U_r^{\top}\vec{b}\|_2^2+\|V_{n-r}\vec{z}\|_2^2+2(V_r\Sigma_r^{-1}U_r^{\top}\vec{b})^{\top}(V_{n-r}\vec{z})\right).$$

Now, note that V is an orthogonal matrix (or that $\mathcal{R}(V_r) = \mathcal{R}(A^{\top})$, $\mathcal{R}(V_{n-r}) = N(A)$), so $\mathcal{R}(V_r) \perp \mathcal{R}(V_{n-r})$. Thus, the last term (an inner product between vectors in both of those subspaces) is zero, and we are left with $\min_{\vec{z} \in \mathbb{R}^{n-r}} (\|V_r \Sigma_r^{-1} U_r^{\top} \vec{b}\|_2^2 + \|V_{n-r} \vec{z}\|_2^2)$.

The first term here is independent of \vec{z} , so this becomes $\|V_r \Sigma_r^{-1} U_r^{\top} \vec{b}\|_2^2 + \min_{\vec{z} \in \mathbb{R}^{n-r}} \|V_{n-r} \vec{z}\|_2^2$. The second term is lower bounded by 0, which is achieved when $\vec{z} = 0$ (and this is the sole minimizer since V_{n-r} is full column rank). So, the answer is $p^* = \|V_r \Sigma_r^{-1} U_r^{\top} \vec{b}\|_2^2$ and $\vec{z}^* = 0$, which corresponds to $\vec{x}^* = V_r \Sigma_r^{-1} U_r^{\top} \vec{b}$.

7. Convexity (10 pts)

(a) (6 pts) Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined as $f(\vec{x}) = \|A\vec{x}\|_2^2$, where $A \in \mathbb{R}^{m \times n}$ is a matrix. Is f a convex function? Prove or disprove.

Solution:

One solution is to derive the Hessian $2A^TA$ and note that it is symmetric positive semidefinite.

(b) (4 pts) Let $g, h : \mathbb{R}^n \to \mathbb{R}$ be fixed twice-differentiable convex functions, and fix real numbers a, b > 0. Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(\vec{x}) = a \cdot g(\vec{x}) + b \cdot h(\vec{x})$ for each $\vec{x} \in \mathbb{R}^n$. Prove f is a convex function.

Solution: Fix $\vec{x}, \vec{y} \in \mathbb{R}^n$, $\alpha \in [0, 1]$ arbitrarily. Then, appealing to the definition of convexity:

$$\begin{split} &f(\alpha \vec{x} + (1 - \alpha)\vec{y}) \\ &= a \cdot g(\alpha \vec{x} + (1 - \alpha)\vec{y}) + b \cdot h(\alpha \vec{x} + (1 - \alpha)\vec{y}) \\ &= a\alpha \cdot g(\vec{x}) + a(1 - \alpha) \cdot g(\vec{y}) + b\alpha \cdot h(\vec{x}) + b(1 - \alpha) \cdot h(\vec{y}) \\ &\leq \alpha \cdot \left[a \cdot g(\vec{x}) + b \cdot h(\vec{x})\right] + (1 - \alpha) \cdot \left[a \cdot g(\vec{y}) + b \cdot h(\vec{y})\right] \\ &= \alpha \cdot f(\vec{x}) + (1 - \alpha) \cdot f(\vec{y}). \end{split}$$

Thus, f is a convex function.

8. Vector Calculus (12 pts)

(a) (6 pts) Compute the gradient and Hessian with respect to \vec{x} of the function $f \colon \mathbb{R}^n \to \mathbb{R}$

$$f(\vec{x}) = 1 - (\vec{a}^{\top} \vec{x})^2, \tag{2}$$

where $\vec{a} \in \mathbb{R}^n$.

Solution: By the chain rule,

$$\nabla f(\vec{x}) = -2(\vec{a}^{\top}\vec{x})\vec{a}.$$

Furthermore, the Hessian is seen to be

$$\nabla^2 f(\vec{x}) = -2\vec{a}\vec{a}^\top.$$

PRINT your student ID: _____

EECS 127/227AT Midterm

(b) (6 pts) Consider $f(\vec{x}) = \sum_{i=1}^{m} \log(b_i - \vec{a}_i^{\top} \vec{x})$, where $\vec{a}_i \in \mathbb{R}^n$ for i = 1, ..., m, and $b_1, b_2, ..., b_m > 0$. The domain of f is the set $\{\vec{x} \in \mathbb{R}^n \mid b_i - \vec{a}_i^{\top} \vec{x} > 0 \text{ for all } i = 1, ..., m\}$, which is assumed to be nonempty.

Compute the gradient of $f(\vec{x})$ with respect to \vec{x} .

HINT: Consider what happens in the special case of f(x) = log(b - x) for a scalar variable $x \in \mathbb{R}$. Then, use the chain rule.

HINT: Recall that $\frac{d}{dx}\log(x) = \frac{1}{x}$.

Solution: The derivative of $\log(b - x)$ with respect to a scalar variable x is easily seen to be $-\frac{1}{b-x}$. Now, using the chain rule, the gradient of $\log(b - \vec{a}^{\top}\vec{x})$ with respect to \vec{x} is

$$-\frac{\nabla(\vec{a}^{\top}\vec{x})}{b-\vec{a}^{\top}\vec{x}} = -\frac{\vec{a}}{b-\vec{a}^{\top}\vec{x}}$$

Hence, summing the gradients for each term, we get:

$$\nabla f(\vec{x}) = -\sum_{i=1}^{m} \frac{\vec{a}_i}{b_i - \vec{a}_i^\top \vec{x}}.$$

9. Best Approximations (24 pts)

We start by recalling the Eckart-Young Theorem: Consider any square matrix $C \in \mathbb{R}^{n \times n}$ and assume that we can write its full singular value decomposition as $C = U\Sigma V^{\top}$ where Σ is the $n \times n$ diagonal matrix with distinct diagonal entries $\sigma_1 > \sigma_2 > \cdots > \sigma_n > 0$. Then, for $0 \le k \le n$, the Eckart-Young Theorem for Frobenius norm states that

$$C_k = U_k \Sigma_k V_k^{\top} = \underset{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) \le k}}{\operatorname{argmin}} \|C - B\|_F$$

where $U_k \in \mathbb{R}^{n \times k}$ is the matrix consisting of the first k columns of U, $V_k \in \mathbb{R}^{n \times k}$ is the matrix consisting of the first k columns of V, and Σ_k is the $k \times k$ diagonal matrix with the top-k singular values $\sigma_1 > \cdots > \sigma_k$ as its diagonal entries.

(a) (8 pts) Now, consider any square matrix $C \in \mathbb{R}^{n \times n}$ and let $C_k \in \mathbb{R}^{n \times n}$ denote its best rank-k approximation in the Frobenius norm. Then, for any orthonormal matrix $W \in \mathbb{R}^{n \times n}$, show that

$$WC_k W^{\top} = \underset{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) < k}}{\operatorname{argmin}} \|WCW^{\top} - B\|_F.$$

Solution:

Using the fact that the Frobenius norm is invariant under orthogonal transformations, we have $||B - WCW^{\top}||_F = ||W^{\top}BW - C||_F$. Therefore, we can write

$$\min_{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) \le k}} \|B - WCW^{\top}\|_F = \min_{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) \le k}} \|W^{\top}BW - C\|_F.$$

Next, we show that $\{W^{\top}BW : B \in \mathbb{R}^{n \times n}, \operatorname{rank}(B) \le k\} = \{Z \in \mathbb{R}^{n \times n} : \operatorname{rank}(Z) \le k\}$. For any $B \in \mathbb{R}^{n \times n}$ such that $\operatorname{rank}(B) \le k, Z = W^{\top}BW$ satisfies $\operatorname{rank}(Z) \le k$. On the other hand, for any $Z \in \mathbb{R}^{n \times n}$ such that $\operatorname{rank}(Z) \le k$, there exists $B = WZW^{\top}$ that satisfies $\operatorname{rank}(B) \le k$ and $W^{\top}BW = W^{\top}WZW^{\top}W = Z$ because W is an orthonormal matrix. Therefore,

$$\min_{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) \le k}} \|W^{\top} B W - C\|_{F} = \min_{\substack{Z \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(Z) \le k}} \|Z - C\|_{F}$$
$$= \|C_{k} - C\|_{F}.$$

Lastly, noting that $||WC_kW^\top - WCW^\top||_F = ||W(C_k - C)W^\top||_F = ||C_k - C||_F$, we can write

$$\|WC_kW^{\top} - WCW^{\top}\|_F = \min_{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) \le k}} \|B - WCW^{\top}\|_F.$$

Since rank $(WC_kW^{\top}) \leq k$, we conclude that WC_kW^{\top} is a minimizer of the given optimization problem.

For the remainder of this problem, we consider a square matrix $A \in \mathbb{R}^{n \times n}$ and assume A has full rank. Using Gram-Schmidt Orthonormalization (GSO), we can write the matrix A as

$$A = QR \tag{3}$$

where $Q \in \mathbb{R}^{n \times n}$ is an orthonormal matrix and $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix.

(b) (4 pts) Find the best rank-n approximation to AA[⊤] in the Frobenius norm. Justify your answer.
Solution: AA[⊤] is the best rank-n approximation since it already has rank n.

(c) (6 pts) Recall that $A \in \mathbb{R}^{n \times n}$ is a square matrix with full rank, and we can write the matrix A as

$$A = QR \tag{4}$$

where $Q \in \mathbb{R}^{n \times n}$ is an orthonormal matrix and $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix.

Assume that $R = \text{diag}(r_1, r_2, \dots, r_n) \in \mathbb{R}^{n \times n}$ is a diagonal matrix with

$$|r_1| > |r_2| > \cdots > |r_n|,$$

and all r_1, r_2, \ldots, r_n are real numbers. Let k < n. Then, show that the best rank-k approximation to AA^{\top} in the Frobenius norm is QSQ^{\top} , where S is a diagonal matrix defined as

$$S = \operatorname{diag}(r_1^2, \dots, r_k^2, 0, \dots, 0) \in \mathbb{R}^{n \times n}.$$

Solution: We can write $AA^{\top} = QRR^{\top}Q^{\top}$. Note that Q is an orthonormal matrix and $RR^{\top} = \text{diag}(r_1^2, r_2^2, \dots, r_n^2)$ is a diagonal matrix. Therefore, $AA^{\top} = QRR^{\top}Q^{\top}$ forms an SVD for AA^{\top} . Then, the result follows by the Eckart-Young Theorem.

(d) (6 pts) Recall that $A \in \mathbb{R}^{n \times n}$ is a square matrix with full rank, and we can write the matrix A as

$$A = QR \tag{5}$$

where $Q \in \mathbb{R}^{n \times n}$ is an orthonormal matrix and $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix.

Now, we no longer assume that R is diagonal. Let k < n and assume that the best rank-k approximation to $RR^{\top} \in \mathbb{R}^{n \times n}$ in the Frobenius norm is given by $G \in \mathbb{R}^{n \times n}$. Then, using the result of part (a), show that the best rank-k approximation to AA^{\top} in the Frobenius norm is given by QGQ^{\top} .

Solution: We can write $AA^{\top} = QRR^{\top}Q^{\top}$. We use part (a) with W = Q and $C = RR^{\top}$. As a result,

$$QGQ^{\top} = \underset{\substack{B \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(B) \le k}}{\operatorname{argmin}} \|B - QRR^{\top}Q^{\top}\|_{F}.$$

Therefore, the best rank-k approximation to AA^{\top} in the Frobenius norm is given by QGQ^{\top} .