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EECS 127/227AT Optimization Models in Engineering
Spring 2019 Final

1. (1 Point) Tell us about a time that you succeeded this semester.

2. (1 Point) What are you looking forward to over summer break?

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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Print your name and student ID:

3. (3 points) Convexity of functions

Let g : Rm → R be any convex function. For any A ∈ Rm×n, prove that f : Rn → R defined as

f(x) = g(Ax) ∀x ∈ Rn,

is also a convex function.

Solution: For every α ∈ [0, 1] and x, y ∈ Rn, we have

f(αx+ (1− α)y) = g(A(αx+ (1− α)y))

≤ αg(Ax) + (1− α)g(Ay)

= αf(x) + (1− α)f(y),

which proves convexity of f .
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Print your name and student ID:

4. (2 points) Multiple Choice

Let f : Rn → R be a convex function. Consider the following optimization problems:

p∗1 = min
t∈R,x∈Rn

t (1)

s.t. ‖x‖2 = t,

f(x) ≤ 0,

p∗2 = min
t∈R,x∈Rn

t (2)

s.t. ‖x‖2 ≤ t,
f(x) ≤ 0.

Write the statement labels (A, B, C) corresponding to statements that are true in
the box given below. More than one statement might be true; and you will get credit for this
problem only if you write the labels corresponding to all statements that are true and do not write
a label corresponding to any statement that is false. No justification is required.

(A) Problem (1) as written is a convex problem.

(B) Problem (2) as written is a convex problem.

(C) We necessarily have p∗1 = p∗2.

Solution: Statement with labels B and C are true. Problem (1) as written is not a convex
problem since we have an equality constraint which is not affine.
Problem (2) as written is a convex problem since both inequality constraints are convex.
Further p∗1 = p∗2 due to the following argument.
Since the second problem is a relaxation of the first we have p∗1 ≥ p∗2. Next suppose we have (x∗, t∗)
as candidate solutions for (2) with ‖x∗‖2 = s < t∗. Then we can decrease our objective value by
using (x∗, s) which is feasible for both problems. Thus p∗1 ≤ p∗2.
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Print your name and student ID:

5. (5 points) Connecting all Bears

A cellular service provider, BearT&T™, wants to place a base station in Berkeley so as to maximize
the quality of service provided to its customers. Let z1, z2, . . . , zm ∈ R2 denote the fixed locations
of the customers. The location for the new base station is given by the solution to:

min
x∈R2

max
i∈{1,...,m}

‖x− zi‖2. (3)

(a) (2 points) Explain why (3) is a convex problem.

Solution: The objective function

max
i∈{1,...,m}

‖x− zi‖2

is pointwise maximum of convex functions of x; therefore, it is convex. Since there is no
constraints, the problem is also convex.

(b) (3 points) Cast this problem in one of the standard convex optimization problems we have
seen in class: LP, QP, QCQP or SOCP.

Solution: We can write this problem as an SOCP by introducing a slack variable:

min
x∈R2,t∈R

t

subject to ‖x− zi‖2 ≤ t for i = 1, . . . ,m.
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Print your name and student ID:

6. (3 points) Newton’s method

Given a symmetric positive definite matrix Q ∈ Sn++ and b ∈ Rn, consider the minimization of the
function f : Rn → R defined as

f(x) =
1

2
x>Qx− b>x.

Let x∗ denote the point at which f(x) is minimized, and define B(x∗) as the ball centered at x∗

with unit `2-norm:
B(x∗) = {x ∈ Rn : ‖x− x∗‖2 ≤ 1}.

Assume we use Newton’s method to minimize f :

xk+1 = xk − (∇2f(xk))
−1∇f(xk),

where the initial point is x0 ∈ B(x∗). For any k ∈ N, find

max
x0∈B(x∗)

‖xk − x∗‖2.

Solution: Note that ∇2f(xk) = Q for all xk ∈ Rn. Therefore, the update rule is:

xk+1 = xk −Q−1Q(xk − x∗) = x∗,

so we have
xk = x∗ ∀k ≥ 1.

As a result,

max
x0∈B(x∗)

‖xk − x∗‖2 =

{
1 k = 0,
0 ∀k ≥ 1.
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Print your name and student ID:

7. (11 points) Linear algebra meets optimization

Let wide matrix A ∈ Rm×n (m < n) be full row rank.

(a) (2 points) Consider the ridge regression problem, where b ∈ Rm, x ∈ Rn and the constant
λ > 0 is given:

min
x
||Ax− b||22 + λ||x||22 (4)

Since this is a convex problem and the objective function is differentiable, the optimum can
be found by setting the gradient to zero. Use this to find the optimal solution x∗.

Solution: Setting the gradient of the objective to 0 at optimum, we find that

2(A>A+ λI)x∗ − 2A>b = 0

Since A>A is PSD and λI is PD, it follows that A>A+ λI is always invertible and hence

x∗ = (A>A+ λI)−1A>b

(b) (6 points) Now we rewrite the problem in (4) by adding a constraint

min
z=Ax−b

||z||22 + λ||x||22. (5)

Let the Lagrangian corresponding to this problem be L(x, z, ν), where ν is the dual variable
corresponding to the equality constraint. Write out the dual function g(ν) = inf

x,z
L(x, z, ν)

explicitly. Solve the dual problem to get ν∗. Find the corresponding values of x̃, z̃ such that
g(ν∗) = L(x̃, z̃, ν∗).

Solution: The dual problem is

max
ν

g(ν)

where

g(ν) = min
x.z
L(x, z, ν)

= min
x,z
‖z‖2 + λ‖x‖2 + ν>(z −Ax+ b)

First we minimize over x. Setting the gradient to 0 we have that

2λx∗ −A>ν = 0 =⇒ x∗ =
1

2λ
A>ν

Setting the gradient to 0 for z we have that

2z∗ + ν = 0 =⇒ z∗ = −1

2
ν
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Plugging back in and simplifying the expression we have that

g(ν) = ν>b− 1

4
‖ν‖22 −

1

4λ
‖A>ν‖22

Maximizing over ν again amounts to setting the gradient to 0 at optimum. Hence we have

b− 1

2
ν∗ − 1

2λ
AA>ν∗ = 0 =⇒ ν∗ = 2(

1

λ
AA> + I)−1b = 2λ(AA> + λI)−1b

It follows that

x̃ = A>(AA> + λI)−1b

z̃ = Ax̃− b
= A(A>(AA> + λI)−1b)− b.

(c) (3 points) Show that for every λ > 0,

(A>A+ λI)−1A>b = A>(AA> + λI)−1b.

Hint: One approach is to start by considering λA>+A>AA>. Another approach is to use the
SVD of A.

Solution:

Method 1: Let A have the thin SVD,

A = UΣV >,

where U ∈ Rm×m,Σ ∈ Rm×m, V > ∈ Rm×n.

Using the SVD of A, A>(AA> + λI)−1 evaluates to,

A>(AA> + λIm)−1 = V ΣU>(UΣV >V ΣU> + λIm)−1

= V ΣU>(UΣ2U> + UλImU
>)−1

= V ΣU>(U(Σ2 + λIm)−1U>)

= V Σ(Σ2 + λIm)−1U>.

Note that Σ2 + λIm is invertible because A is full row rank and λ > 0.

Next we evaluate (A>A+ λI)−1A>. We have,

(A>A+ λIn)−1A> = (V ΣU>UΣV > + λIn)−1V ΣU>

= (V Σ2V > + V λImV
>)−1V ΣU>

= (V (Σ2 + λIm)V >)−1V ΣU>

= V (Σ2 + λIm)−1V >V ΣU>

= V (Σ2 + λIm)−1ΣU>

= V Σ(Σ2 + λIm)−1U>,

where in the last equality we can interchange order of matrices since they are both diagonal.
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Thus we have, A>A+ λI)−1A> = A>(AA> + λI)−1,
which gives us,
(A>A+ λI)−1A>b = A>(AA> + λI)−1b.

Method 2: Note

λA> +A>AA> = A>(λI +AA>) = (λI +A>A)A>

Hence we have that

(λI +A>A)−1A> = A>(λI +AA>)−1

The result follows. Note that both λI + A>A and λI + AA> are invertible since they have
strictly positive eigenvalues and are hence positive definite.
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Print your name and student ID:

8. (9 points) A matrix optimization problem

Consider the following optimization problem

min
X∈Rn×n

1

2
‖X‖2F

s.t. X ∈ S,

where S = {A ∈ Rn×n | σmin(A) ≥ 2} and σmin(A) refers to the smallest singular value of A.

(a) (2 points) Is the objective function convex? Justify.

Solution:

Solution 1: Given X,Y ∈ Rn×n and α ∈ [0, 1], we have

‖αX + (1− α)Y ‖2F = 〈αX + (1− α)Y, αX + (1− α)Y 〉
= α2‖X‖2F + (1− α)2‖Y ‖2F + 2α(1− α)〈X,Y 〉
≤ α2‖X‖2F + (1− α)2‖Y ‖2F + 2α(1− α)‖X‖F ‖Y ‖F
≤ α2‖X‖2F + (1− α)2‖Y ‖2F + α(1− α)

(
‖X‖2F + ‖Y ‖2F

)
= α‖X‖2F + (1− α)‖Y ‖2F ,

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality
follows from the fact that ab ≤ 1

2(a2 + b2) for all a, b ∈ R. This shows that the objective
function is convex.

Solution 2: Consider g : Rn×n → R+ and f : R+ → R defined as

g(X) = ‖X‖F ,

f(z) =
1

2
z2.

Then the objective function is
1

2
‖X‖2F = f ◦ g(X).

Note that g is a convex function because it is a norm. In addition, f is a convex function
and it is strictly increasing on its domain. Therefore, their composition f ◦ g, which is the
objective function, is also a convex function.

(b) (3 points) Is the constraint set convex? Justify.

Solution: Assume X ∈ S. Then σmin(X) = σmin(−X) ≥ 2. Consider the point Y =
1
2X + 1

2(−X) = 0. Clearly Y is a convex combination of two points in S, but σmin(Y ) = 0,
and therefore, Y /∈ S. As a result, the constraint set S is not convex.

Common mistake:

i. Claim that σmin(X) = min‖u‖22≤1,‖v‖22≤1 u
>Xv. This is not true, as the right hand side is

minimized to the negative of the largest singular value.

ii. Claim that σmin is convex or concave. This is not true, as the smallest singular value of
a matrix is actually neither convex nor concave.



10

(c) (4 points) By using the singular value decomposition of X, rewrite the objective function and
constraints in terms of the singular values of X and find a solution X∗.

Solution:

Let X = UΣV > denote the SVD decomposition of X. Then,

‖X‖2F = trace(V ΣU>UΣV >) = trace(Σ2) =
n∑
i=1

σ2
i .

Then we can write the optimization problem as

min
U,Σ,V

√√√√ n∑
i=1

σ2
i

s.t. σmin ≥ 2.

Any matrix in Rn×n which has σ1 = · · · = σn = 2 is a solution for this problem. In other
words, the solution set for the original problem is given as{

2UV > : U, V ∈ Rn×n, UU> = U>U = V V > = V >V = I
}
.
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Print your name and student ID:

9. (8 points + 5 bonus points) Energy functions for linear systems

Given A ∈ Rn×n and x0 ∈ Rn, consider the linear-time-invariant system with no input:

xk+1 = Axk ∀k ∈ N. (6)

Let P be a symmetric positive semidefinite matrix, and let Q be a symmetric positive definite
matrix in Rn×n; that is, P ∈ Sn+ and Q ∈ Sn++. Assume P and Q satisfy

A>PA− P � −Q, (7)

and define V : Rn → R as
V (xk) = x>k Pxk ∀xk ∈ Rn.

(a) (2 points) Show that V (xk+1)− V (xk) ≤ 0 for all k ∈ N.
Hint: Use (7).

Solution: For every xk ∈ Rn, we have

V (xk+1)− V (xk) = x>k+1Pxk+1 − x>k Pxk
= x>k (A>PA− P )xk

≤ x>k (−Q)xk

≤ 0,

where the last inequality follows from the fact that Q ∈ Sn++.

(b) (4 points) Find a constant β ∈ (0,∞) in terms of eigenvalues of P and Q such that

V (xk+1) ≤ (1− β)V (xk) ∀k ∈ N.

Hint: If you can find α, γ ∈ (0,∞) such that

x>k Qxk ≥ α‖xk‖22 ∀xk ∈ Rn,

x>k Pxk ≤ γ‖xk‖22 ∀xk ∈ Rn,

then
−x>k Qxk ≤ −

α

γ
x>k Pxk = −α

γ
V (xk) ∀xk ∈ Rn.

Solution: For every xk ∈ Rn, we have

xkQxk ≥ λmin(Q)‖xk‖22,

λmax(P )‖xk‖22 ≥ xkPxk,
which gives

x>k Qxk ≥
λmin(Q)

λmax(P )
x>k Pxk = βV (xk),

where we have defined β := λmin(Q)/λmax(P ). Then, for every xk ∈ Rn:

A>PA− P � Q =⇒ x>k A
>PAxk − x>k Pxk ≤ −x>k Qxk

=⇒ V (xk+1)− V (xk) ≤ −βV (xk).
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(c) (2 points) Along with the nonnegativity of V (xk), part (b) shows that V (xk) converges to
zero for every initialization. In analysis of dynamical systems, functions like V are used to
represent the energy in the system, and its convergence to zero indicates the dissipation of
this energy. For this reason, finding V is an important problem in the study of dynamical
systems.

Given A ∈ Rn×n and Q ∈ Sn++ for system (6), we can use the following optimization problem
to find the matrix P defining the function V :

min
P∈Sn+

0 (8)

subject to A>PA− P +Q � 0.

Only for this part of the question, consider the scalar version of problem (8):

min
p∈R

0 (9)

subject to p ≥ 0

a2p− p+ q ≤ 0,

where a, q ∈ R are some fixed constants and q > 0. Under what conditions on a and q, is the
problem (9) feasible?

Solution: For feasibility of the problem, we need constraint set to be nonempty, i.e.,

S = {p ∈ R : p ≥ 0, (a2 − 1)p ≤ −q}

must be nonempty. Since q > 0, the term a2 − 1 must be negative, or equivalently, we must
have a2 < 1. Note that this condition corresponds to the stability of the dynamical system.

(d) (Bonus: 5 points) Consider the non-scalar problem (8) again. Find the dual problem corre-
sponding to (8) by explicitly deriving the dual function and the feasibility constraints of the
dual problem. Do not dualize the constraint P ∈ Sn+.

Hint: For any Y ∈ Sn, we have

max
Λ�0

〈Y,Λ〉 =

{
0 if Y � 0
+∞ otherwise.

Solution: We know that an optimization problem given as

min
x

f(x)

subject to x ∈ C

is equivalent to

min
x

f(x) + h(x),

where

h(x) =

{
0 x ∈ C,
+∞ x /∈ C.

Therefore, as suggested by the hint, we can write

p∗ = min
P∈Sn+

max
Λ∈Sn+

〈A>PA− P +Q,Λ〉.
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Then the dual problem is given by

d∗ = max
Λ∈Sn+

g(Λ),

where the dual function g(Λ) is

g(Λ) = min
P∈Sn+

〈A>PA− P +Q,Λ〉.

By rearranging terms:

g(Λ) = min
P∈Sn+

〈P,AΛA> − Λ〉+ 〈Q,Λ〉

= 〈Q,Λ〉 − max
P∈Sn+

〈P,−AΛA> + Λ〉

=

{
〈Q,Λ〉 if Λ−AΛA> � 0
−∞ otherwise

where the last equality follows from the hint. Then the dual problem can be written as

max
Λ∈Sn+

〈Q,Λ〉

subject to Λ−AΛA> � 0.
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Print your name and student ID:

10. (6 points) Minimizing quadratics

Consider the following optimization problem:

p∗ = inf
x∈R2

x>Ax+ b>x,

where A ∈ S2
+ and b ∈ R2.

(a) (3 points) Suppose A =

[
1 1
1 1

]
. Find a vector b with ‖b‖2 = 1 such that p∗ > −∞.

Hint: Is A invertible?

Solution: A has following eigenvalue, eigenvector pairs:

λ1 = 2, v1 = [1, 1]>

λ2 = 0, v2 = [1,−1]>.

For p∗ to be finite we need b to be orthogonal to v2, the eigenvector corresponding to 0
eigenvalue. This along with the condition that ‖b‖2 = 1 gives b = 1√

2
[1, 1]>.

(b) (3 points) Now assume A is a symmetric positive definite matrix, i.e. A ∈ S2
++ and b = [0, 0]>.

Suppose we add a `∞-norm regularizer term to the objective to get the following optimization
problem:

p∗ = inf
x∈R2

x>Ax+ ‖x‖∞ .

Write the corresponding dual problem as

d∗ = sup
y∈R2

g(y)

subject to ‖y‖c ≤ 1,

where you will determine g(y) and c.
Hint: For every x ∈ R2, we have

sup
y∈R2 : ‖y‖1≤1

x>y = ‖x‖∞ .

Solution:

Consider the Lagrangian,

L(x, y) = x>Ax+ x>y.

Then,

p∗ = inf
x∈R2

sup
y∈R2 : ‖y‖1≤1

x>Ax+ x>y,

where we used the hint,

sup
y∈R2 : ‖y‖1≤1

x>y = ‖x‖∞ .
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Switching the order of min and max we get the dual problem,

d∗ = sup
y∈R2 : ‖y‖1≤1

inf
x∈R2

x>Ax+ x>y.

Consider the inner minimization problem. The objective function is strictly convex since A is
positive definite and since the problem is unconstrained we can find the optimizer by setting
the derivative to zero. Setting derivative to zero we get,

2Ax+ y = 0

=⇒ x = −1

2
A−1y.

A is invertible so A−1 exists.
Substituting this value of x we get,

d∗ = sup
y∈R2 : ‖y‖1≤1

−1

4
y>A−1y.

We can put this in the form asked in question as,

d∗ = sup
y∈R2

−1

4
y>A−1y

s.t. ‖y‖1 ≤ 1.
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Print your name and student ID:

11. (13 points) A matrix game

Let A =

[
1 3
4 2

]
be a payoff matrix for two games as described in the parts below. Suppose row

player, R, chooses action x and column player, C, chooses action y, then both players get the payoff
s = x>Ay. R wishes to minimize payoff, while C wishes to maximize payoff.

(a) Suppose x ∈ E , y ∈ E , where E = {[0, 1]>, [1, 0]>}.
i. (3 points) Suppose R chooses x first and then C chooses y. The optimal payoff s∗R is given

by

s∗R = min
x∈E

max
y∈E

x>Ay.

For the given matrix A, s∗R = 3 achieved for x∗ = [1, 0]>, y∗ = [0, 1]>.

Now suppose C chooses y first and then R chooses x. The optimal payoff s∗C is given by,

s∗C = max
y∈E

min
x∈E

x>Ay.

Find s∗C for the given matrix A. Justify your answer.
Solution:
For y = [0, 1]>, the inner minimization is given by,

min
x∈E

x>A[0, 1]> = min
x∈E

x>[3, 2]>

= min(3, 2)

= 2,

achieved for x∗ = [0, 1]>.
For y = [1, 0]>, the inner minimization is given by,

min
x∈E

x>A[1, 0]> = min
x∈E

x>[1, 4]>

= min(1, 4)

= 1,

achieved for x∗ = [1, 0]>. Thus s∗C = 2 achieved for x∗ = [0, 1]>, y∗ = [0, 1]>.

ii. (1 point) Compare s∗R to s∗C . Who is better off — the first player or the second player?
Solution: We have s∗R = 3 > 2 = s∗C . If R goes first both players get a larger payoff
than if R goes second so R prefers to go second. Similarly C prefers to go second. Thus
it is better to go second in this game and react to other player’s action.

iii. (2 points) Now suppose A was unknown. Does your choice of whether to go first or second
remain the same? Justify.
Solution: By weak duality we have,

s∗R = min
x∈E

max
y∈E

x>Ay ≥ max
y∈E

min
x∈E

x>Ay = s∗C .

Thus it is better for a player to go second irrespective of what the payoff matrix A is.
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(b) Suppose x ∈ P, y ∈ P where P = {z = [z1, z2]> ∈ R2 |z1 ≥ 0, z2 ≥ 0, z1 + z2 = 1}. Suppose R
chooses x first and then C chooses y. Let p∗R denote the optimal payoff in this case given by,

p∗R = min
x∈P

max
y∈P

x>Ay.

i. (3 points) For a given x ∈ P, show that max
y∈P

x>Ay = max
y∈E

x>Ay.

Hint: Show that

max
y∈P

x>Ay ≤ max
y∈E

x>Ay,

max
y∈P

x>Ay ≥ max
y∈E

x>Ay.

Solution: Let (x>A)i refer to ith entry of row vector x>A. Then we have for every
y ∈ P,

x>Ay = (x>A)1y1 + (x>A)2y2

≤ max((x>A)1, (x
>A)2)(y1 + y2)

= max((x>A)1, (x
>A)2)

= max
y∈E

x>Ay,

where the first inequality follows since y1, y2 ≥ 0 and the second inequality follows since
y1 + y2 = 1. Since this is true for every y ∈ P we have,

max
y∈P

x>Ay ≤ max
y∈E

x>Ay. (10)

Since E ⊂ P we also have,

max
y∈P

x>Ay ≥ max
y∈E

x>Ay. (11)

From (10), (11), we have

max
y∈P

x>Ay = max
y∈E

x>Ay.

ii. (4 points) Formulate a Linear Program with finitely many constraints to find p∗R, which
is equivalent to

p∗R = min
x∈P

max
y∈E

x>Ay

due to result of part (i).
Solution: We have,

p∗R = min
x∈P

max
y∈P

x>Ay

= min
x∈P

max
y∈E

x>Ay,
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using the result of the previous part.We first introduce a slack variable as follows,

p∗R = min
x∈P,v∈R

v

s.t. x>A

[
0
1

]
≤ v

x>A

[
1
0

]
≤ v.

We can write this as an LP as follows:

p∗R = min
x∈R2,v∈R

v

s.t. x>A

[
0
1

]
≤ v

x>A

[
1
0

]
≤ v

x ≥ 0

x>1 = 1.

,
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Print your name and student ID:

12. (5 points + 3 bonus points) Soft-margin SVM

Consider the soft-margin SVM problem,

p∗(C) = min
w∈Rm,b∈R,ξ∈Rn

1

2
‖w‖22 + C

n∑
i=1

ξi (12)

s.t. 1− ξi − yi(x>i w − b) ≤ 0, i = 1, 2, . . . , n

− ξi ≤ 0, i = 1, 2, . . . , n,

where xi ∈ Rm refers to the ith training data point, yi ∈ {−1, 1} is its label, and C ∈ R+ (i.e.
C > 0) is a hyperparameter.

Let αi denote the dual variable corresponding to the inequality 1− ξi − yi(x>i w− b) ≤ 0 and let βi
denote the dual variable corresponding to the inequality −ξi ≤ 0.

The Lagrangian is then given by

L(w, b, ξ, α, β) =
1

2
‖w‖22 + C

n∑
i=1

ξi +

n∑
i=1

αi(1− ξi − yi(x>i w − b))−
n∑
i=1

βiξi.

Suppose w∗, b∗, ξ∗, α∗, β∗ satisfy the KKT conditions.

Classify the following statements as true or false. Justify your answers mathematically. A
correct answer with missing or incorrect justification will be given 0 points.

(a) (3 points) Suppose the optimal solution w∗, b∗ changes when the training point xi is removed.
Then originally, we necessarily have yi(x

>
i w
∗ − b∗) = 1− ξ∗i .

Solution: True. Since optimal w∗ changes if we remove point xi we have α∗i 6= 0. By
complementary slackness we have,

α∗i (1− ξ∗i − yi(x>i w∗ − b∗)) = 0,

which gives,

1− ξ∗i − yi(x>i w∗ − b∗) = 0

=⇒ yi(x
>
i w
∗ − b∗) = 1− ξ∗i .

(b) (2 points) Suppose the optimal solution w∗, b∗ changes when the training point xi is removed.
Then originally, we necessarily have α∗i > 0.

Solution: True. Since optimal w∗ changes if we remove point xi we have α∗i 6= 0. Further
by dual feasibility we have α∗i ≥ 0 which together gives α∗i > 0.

(c) (Bonus: 3 points) Suppose the data points are strictly linearly separable, i.e. there exist w̃
and b̃ such that for all i,

yi(x
>
i w̃ − b̃) > 0.

Then p∗(C)→∞ as C →∞.
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Solution: False.
Since

yi(x
>
i w̃ − b̃) > 0.

we have for sufficiently small ε > 0,

yi(x
>
i w̃ − b̃) ≥ ε

=⇒ yi

(
x>i

w̃

ε
− b̃

ε

)
≥ 1.

Thus, w̄ = w̃
ε , b̄ = b̃

ε , ξ̄ = 0 is a feasible point with objective value 1
2 ‖w̄‖

2
2 <∞ irrespective of

value of C.


