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EECS 127/227AT Optimization Models in Engineering
Spring 2019 Midterm 2

1. (1 Point) Tell us about something you are proud of.

2. (1 Point) Tell us about something interesting you learned in a class.

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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Print your name and student ID:

3. (9 Points) Convexity of sets
Determine if the sets C given below are convex. Either prove that the set is convex or provide an
example to show that it is not convex. Correctly guessing whether the set is convex or non-convex
with no/incorrect justification will get 0 points. For each part in the first box write “Yes” or “No”
depending on your answer and in the second box provide the justification for your answer. You
may use any techniques used in class or discussion to demonstrate or disprove convexity.

(a) (3 points)

C = {x ∈ R2 | x1x2 ≥ 0},

where x = [x1, x2]
>.

Solution: No. The set S is shown in Fig. 3.1 : From the figure it is clear that the set is

Figure 3.1: S = {(x1, x2) | x1x2 ≥ 0}.

non-convex. For a formal proof consider points z1 = (0, 1) and z2 = (−1, 0). We have z1 ∈ S
and z2 ∈ S. Then z3 = z1+z2

2 = (−0.5, 0.5) /∈ S since (−0.5) ∗ 0.5 < 0.

(b) (3 points)

C = {X ∈ Sn | λmin(X) ≥ 2},

where Sn is the set of symmetric matrices in Rn×n, and λmin(X) refers to the minimum
eigenvalue of X.
Solution: Yes. Consider X1, X2 ∈ C. The minimum eigenvalue of X is given as,

λmin(X) = min
z∈Rn : ‖z‖2=1

z>Xz.

Thus we have

min
z∈Rn : ‖z‖2=1

z>X1z ≥ 2

min
z∈Rn : ‖z‖2=1

z>X2z ≥ 2
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For θ ∈ [0, 1] consider Xθ = θX1 + (1− θ)X2. Then,

λmin(Xθ) = min
z∈Rn : ‖z‖2=1

z>Xθz

= min
z∈Rn : ‖z‖2=1

z>(θX1 + (1− θ)X2)z

= min
z∈Rn : ‖z‖2=1

(θz>X1z + (1− θ)z>X2z)

≥ min
z∈Rn : ‖z‖2=1

θz>X1z + min
z∈Rn : ‖z‖2=1

(1− θ)z>X2z

≥ θ2 + (1− θ)2
= 2.

(c) (3 points) Let B = {x ∈ Rn | ‖x‖2 ≤ 1}. Let H(w) denote the hyperplane with normal
direction w ∈ Rn i.e. H(w) = {x ∈ Rn | x>w = 0}. Let P : Rn → Rn be given by,

P (x) = argmin
y∈H(w)

‖y − x‖2 .

Let

C = {P (x) | x ∈ B}.

Solution: Yes. Method 1:
Let Q ∈ Rn×n−1 denote the matrix with columns forming a basis for H(w). Then the opti-
mization problem for P (x) can be written as,

P (x) = Q argmin
w∈Rn−1

‖Qw − x‖22 ,

and has the closed form solution P (x) = Q(Q>Q)−1Q>x = Lx for L = Q(Q>Q)−1Q>. Note
that P (x) is linear in x. B is a convex set and P is an affine operator and affine transforma-
tions of convex sets are convex so C is convex.
Method 2:
Let Q ∈ Rn×n−1 denote the matrix with columns forming a basis for H(w). Then the opti-
mization problem for P (x) can be written as,

P (x) = Q argmin
w∈Rn−1

‖Qw − x‖22 ,

and has the closed form solution P (x) = Q(Q>Q)−1Q>x = Lx for L = Q(Q>Q)−1Q>. Note
that P (x) is linear in x.
Let z1, z2 ∈ C. This means there exist x1, x2 ∈ B such that z1 = Lx1 and z2 = Lx2. For
λ ∈ [0, 1] consider xθ = θx1 + (1 − θ)x2. Since B is convex (since norm balls are convex), we
have xθ ∈ B. Then,

zθ = θz1 + (1− θ)z2
= θLx1 + (1− θ)Lx2
= L(θx1 + (1− θ)x2)
= Lxθ

= P (xθ),

and thus belongs in C. This proves that C is convex.
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Print your name and student ID:

4. (6 Points) Convexity of functions
Determine if the function f is convex in the following. Justify your answer. Correctly guessing
with no/incorrect justification will get 0 points. For each part in the first box write “Yes” or “No”
depending on your answer and in the second box provide the justification for your answer. You
may use any techniques used in class or discussion to demonstrate or disprove convexity.

(a) (3 Points) f : R2 → R

f(x) = x1x2 + 3x1 + 4x2 + 16,

where x = [x1, x2]
>, x1 ∈ R, x2 ∈ R.

Solution: No. The gradient is given by ∇f(x) =

[
x2 + 3
x1 + 4

]
.

The Hessian is given by,

∇2f(x) =

[
0 1
1 0

]
.

The eigenvalues of the Hessian are λ1 = 1, λ2 = −1. Since one eigenvalue is negative, ∇2f(x)
is not positive semidefinite and thus f is not convex.

(b) (3 Points) f : Rm×n → R with f(X) = σmax(X), which is the largest singular value of X.
Solution: Method 1:
Note that f(X) = max{u>Xv : u ∈ Rm, ‖u‖2 = 1, v ∈ Rn, ‖v‖2 = 1}, which is the pointwise
maximum of affine functions of X. Therefore f is convex.

Method 2:
f(X) = ‖X‖2,2, and any norm is a convex function, so f(X) is convex.
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Print your name and student ID:

5. (12 Points) True or False
Consider the following primal optimization problem:

p∗ = inf
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, 2 . . . ,m,

where for all i = 0, 1, . . . ,m, the function fi : Rn → R is differentiable and scalar-valued.
Note that we have made no assumption about the convexity of any of the fi’s.
The Lagrangian for this problem is given by,

L(x, λ) = f0(x) +

m∑
i=1

λi(fi(x)),

where λ ∈ Rm, λ = [λ1, λ2, . . . , λm]>. The dual objective function is given by,

g(λ) = inf
x∈Rn

L(x, λ).

The dual problem is,

d∗ = sup
λ≥0

g(λ).

Classify each of the following statements as True or False. Justify your answer. Guessing correctly
with no/incorrect justification will get 0 points. For each part, write “True” or “False” in the first
box and provide the justification for your answer in the second box.

(a) (2 Points) The dual objective function g(λ) is concave in λ.

Solution: True. Pointwise infimum of affine functions in λ is concave in λ.

(b) (2 Points) If x̃ ∈ Rn and λ̃ ∈ Rm satisfy the KKT conditions then we necessarily have
p∗ = f0(x̃) and d∗ = g(λ̃).
Solution: False. For an arbitrary optimization problem, the KKT conditions are not even
necessary for optimality. Furthermore, if the problem is convex and satisfies a constraint
qualification (such as slater’s), then the KKT conditions completely characterize optimality.

(c) (2 Points) If f0(x) is a convex function, x̃ is a primal feasible point (i.e x̃ satisfies the inequality
constraints fi(x̃) ≤ 0, for i = 1, 2, . . . ,m), and d∗ = 5, then we necessarily have that p∗ = 5.
Solution: False. Firstly, we do not even know if the problem is a convex optimization
problem (no information is given about fi(x) being convex). Secondly, Slater’s condition is
only a sufficient condition for strong duality to hold but it is not necessary. Even if the problem
is fully convex, it could have strong duality without Slater’s condition being satisfied. Finally,
since x̃ is primal feasible, that is not to say there does not exist another primal feasible point
that strictly satisfies the inequality constraints. For all these reasons, strong duality may not
hold.
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(d) (2 Points) If there exists a pair of feasible x̃ ∈ Rn and λ̃ ∈ Rm such that f0(x̃) = g(λ̃) then we
necessarily have p∗ = d∗.
Solution: True. We have that

f0(x̃) ≥ inf
x∈Rn

f0(x) = p∗ ≥ d∗ = sup
λ≥0

g(λ) ≥ g(λ̃),

and since f0(x̃) = g(λ̃), the inequalities hold with equality, and p∗ = d∗.

(e) Suppose that strong duality holds, the primal problem is convex and differentiable and has
a unique optimizer, x∗. Let n = 1 and m = 2, so there are only two constraint functions
f1 : R→ R and f2 : R→ R. Let these two constraint functions for the primal problem be:

f1(x) = −x+ a

f2(x) = x− b,

with a, b ∈ R and a < b.

i. (2 Points) If a < x∗ < b then we necessarily have d∗ = g(λ̃) for λ̃ = [0, 0]>.
Solution: True. By complementary slackness, since f1(x

∗) 6= 0 and f2(x
∗) 6= 0,

λ̃1 = λ̃2 = 0.

ii. (2 Points) It is possible to have d∗ = g(λ̃) for λ̃ = [1, 1]>.
Solution: False. Complementary slackness would then imply that both inequality
constraints are tight, which would require x∗ = a and x∗ = b. Since a 6= b, this is
impossible. Then λ̃ 6= [1, 1]>.
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Print your name and student ID:

6. (9 Points) Cross-entropy minimization

Let q1, q2, . . . , qm be such that qi ≥ 0 for all i ∈ {1, . . . ,m} and
∑m

i=1 qi = 1. Assume log means

the natural log. Let x =
[
x1 x2 . . . xm

]>
. Consider

minimize f(x) = −
m∑
i=1

qi log(xi)

subject to

m∑
i=1

xi ≤ 1,

xi ≥ 0 ∀i ∈ {1, . . . ,m}.

(a) (2 Points) Is this a convex optimization problem? Justify.
Solution:

Logarithm is a concave function =⇒ − log(xi) is a convex function. The objective function
is nonnegative combination of convex functions, so it is convex. The constraint functions are
all affine, so they are also convex. As a result, the problem is convex.

(b) (4 Points) Write the dual problem by dualizing only the constraint
∑m

i=1 xi ≤ 1. Denote the
corresponding dual variable by λ.
Solution:

We can write the Lagrangian as

L(x, λ) = −
m∑
i=1

qi log(xi) + λ(

m∑
i=1

xi − 1).

The dual function is obtained by

g(λ) = min
x≥0

L(x, λ).

Setting derivative with respect to each xi to zero, we obtain

− qi
x∗i

+ λ∗ = 0 for i = 1, . . . ,m =⇒ x∗i =
qi
λ∗

for i = 1, . . . ,m. (1)

Then the dual problem is given as

max
λ>0

g(λ) = −
m∑
i=1

qi log(qi) + log(λ) + 1− λ,

where we have used the fact that
∑m

i=1 qi = 1.

(c) (3 Points) Find the primal optimal solution x∗. Justify.
Solution:

We can solve the dual problem by setting the derivative to zero:

1

λ∗
− 1 = 0 =⇒ λ∗ = 1.
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In addition, since the primal problem is strictly feasible (e.g. x1 = · · · = xm = 1
m+1), Slater’s

condition is satisfied, and strong duality holds. Then, we can use (1) to obtain the optimal
solution x∗:

x∗i = qi for i = 1, . . . ,m.
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Print your name and student ID:

7. (11 Points) Gradient Descent Algorithm

Consider g : Rn → R with g(x) = 1
2x
>Qx − x>b where Q is a symmetric positive definite matrix,

i.e. Q ∈ Sn++.

(a) (4 Points) Write the update rule for the gradient descent algorithm

xk+1 = xk − η∇g(xk),

where η is the step size of the algorithm, and bring it into the form

(xk+1 − x∗) = Pη(xk − x∗),

where Pη ∈ Rn×n is a matrix that depends on η. Find x∗ and Pη in terms of Q, b and η.
Note: x∗ is a minimizer of g.

Solution: We have ∇g(x) = Qx− b and

xk+1 = xk − η(Qxk − b) = xk − ηQ(xk −Q−1b).

We can write

xk+1 −Q−1b = xk −Q−1b− ηQ(xk −Q−1b) = (I − ηQ)(xk −Q−1b).

This shows that x∗ = Q−1b and Pη = I − ηQ.

(b) (3 Points) Write a condition on the stepsize η and the matrix Q that ensures convergence of
xk to x∗ for every initialization of x0.

Solution: From part (a), we have

xk − x∗ = (I − ηQ)k(x0 − x∗).

For every initialization x0, (xk−x∗) converges to zero if (and only if) all eigenvalues of (I−ηQ)
is in (−1, 1):

−1 < 1− ηλ < 1 for all eigenvalue λ of Q.

Since Q is positive definite, all of its eigenvalues are positive, and the right hand side of the
inequality is satisfied for all η > 0. For the left hand side of the inequality, we need

−1 < 1− nλ ∀λQ ⇐⇒ η <
2

λmax(Q)
.

(c) (4 Points) Assume all eigenvalues of Q are distinct. Let ηm denote the largest stepsize that
ensures convergence for all initializations x0, based on the condition computed in part (b).
Does there exist an initialization x0 6= x∗ for which the algorithm converges to the minimum
value of g for certain values of the step size η that are larger than ηm? Justify your answer.

Hint: The question asks if such initializations exist; not whether it is practical to find them.
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Solution: From part (a), we have

xk − x∗ = (I − ηQ)k(x0 − x∗).

If we want
(I − ηQ)k(x0 − x∗)→ 0 as k →∞

for a specific initialization x0, the vector (x0 − x∗) must lie in the eigenspaces of (I − ηQ)
corresponding to the eigenvalues in the range (−1, 1). This explanation gets full credit.

For example, if 2
λ1
< η < 2

λ2
, where λ1 and λ2 are the largest two eigenvalues of Q, we have

(I − ηQ)k(x0 − x∗)→ 0 as long as (x0 − x∗) does not have any component in the eigenspace
corresponding to the minimum eigenvalue of (I − ηQ).


