Midterm

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.
As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.
Solution:
2. SID (3 pts)

When the exam starts, write your SID at the top of every page. No extra time will be given for this task.
3. Favorites. Any answer, as long as you write it down, will be given full credit. ($2 \mathbf{p t s}$)
(a) (1 pts) What's your favorite restaurant in Berkeley?

Solution: Any answer is fine.
(b) (1 pts) What's some music that makes you happy?

Solution: Any answer is fine.

4. Rank 1 Approximation Error (7 pts)

Consider a 2×2 matrix

$$
A=\left[\begin{array}{cc}
-4 & 8 \tag{1}\\
7 & 1
\end{array}\right]
$$

The eigenvalue-eigenvector pairs of $A^{\top} A$ are

$$
\left(\lambda_{1}, \vec{v}_{1}\right)=\left(90,\left[\begin{array}{c}
1 / \sqrt{2} \tag{2}\\
-1 / \sqrt{2}
\end{array}\right]\right), \quad\left(\lambda_{2}, \vec{v}_{2}\right)=\left(40,\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\right)
$$

(a) (3 pts) What are the singular values of the matrix A ? You do not have to justify your answer.

HINT: You should not have to do much computation here.
Solution: We have that $\sigma_{i}\{A\}=\sqrt{\lambda_{i}\left\{A^{\top} A\right\}}$ by definition. Hence $\sigma_{1}\{A\}=\sqrt{90}$ and $\sigma_{2}\{A\}=\sqrt{40}$.
(b) (4 pts) For A as given in (1) with $A^{\top} A$ as given in (2), consider the following problem:

$$
\begin{equation*}
p^{\star}=\min _{\substack{B \in \mathbb{R}^{2 \times 2} \\ \operatorname{rank}(B)=1}}\|A-B\|_{F}^{2} \tag{3}
\end{equation*}
$$

What is the value of p^{\star} ? Justify your answer.
HINT: You should not have to do any computation at all here.
Solution: The rank 1 approximation minimizing the Frobenius norm error of a matrix $A=\sum_{i=1}^{n} \sigma_{i}\{A\} u_{i} v_{i}^{\top}$ is $\sigma_{1}\{A\} u_{1} v_{1}^{\top}$. Hence the squared Frobenius norm error for the best rank 1 approximation is $\sum_{i=2}^{n} \sigma_{i}\{A\}^{2}$. In our case, since the matrix is 2×2, this error just becomes $\sigma_{2}\{A\}^{2}=40$.
5. ℓ^{∞} Constraint (7 pts)

Consider the optimization problem

$$
\begin{align*}
\min _{\vec{x} \in \mathbb{R}^{2}} & {\left[\begin{array}{c}
1 \\
-1
\end{array}\right]^{\top} \vec{x} } \tag{4}\\
\text { s.t. } & \|\vec{x}\|_{\infty} \leq 1 \tag{5}\\
& {\left[\begin{array}{c}
-1 \\
1
\end{array}\right]^{\top} \vec{x} \leq-1, } \tag{6}
\end{align*}
$$

where $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(a) (4 pts) Sketch the feasible region of the above optimization problem in the graph provided below.

Label each constraint.

Solution:

\qquad

Here the first constraint is in red, the second constraint is in blue, and the overall feasible region is the green polygon.
(b) (3 pts) Sketch the 2-level set, the 0-level set, and the - 2-level set of the objective function in (4). Label each set.

Solution:

Print your student ID:

We see here the level sets of the objective function - the -2 -level set in purple, the 0 -level set in black, and the 2-level set in red.

6. Convexity of the Probability Simplex (5 pts)

Let n be a positive integer. The probability simplex on \mathbb{R}^{n}, denoted \mathcal{P}_{n}, is the set

$$
\mathcal{P}_{n}=\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i} \geq 0 \forall i, \sum_{i=1}^{n} x_{i}=1\right\} \quad \text { where } \quad \vec{x}=\left[\begin{array}{c}
x_{1} \tag{7}\\
\vdots \\
x_{n}
\end{array}\right]
$$

Is \mathcal{P}_{n} convex? If yes, prove it. If no, justify your answer using an example.
Solution: Yes, \mathcal{P}_{n} is convex. Let $\vec{x}, \vec{y} \in \mathcal{P}_{n}$ let $\theta \in[0,1]$, and define $\vec{z}=\theta \vec{x}+(1-\theta) \vec{y}$. We show that $\vec{z} \in \mathcal{P}_{n}$. Indeed,

$$
\begin{align*}
z_{i} & =\underbrace{\theta}_{\geq 0} \underbrace{x_{i}}_{\geq 0}+\underbrace{(1-\theta)}_{\geq 0} \underbrace{y_{i}}_{\geq 0} \tag{8}\\
& \geq 0 \tag{9}\\
\sum_{i=1}^{n} z_{i} & =\sum_{i=1}^{n}\left(\theta x_{i}+(1-\theta) y_{i}\right) \tag{10}\\
& =\sum_{i=1}^{n} \theta x_{i}+\sum_{i=1}^{n}(1-\theta) y_{i} \tag{11}\\
& =\theta \underbrace{\sum_{i=1}^{n} x_{i}}_{=1}+(1-\theta) \underbrace{\sum_{i=1}^{n} y_{i}}_{=1} \tag{12}\\
& =\theta+(1-\theta)=1 . \tag{13}
\end{align*}
$$

Thus $\vec{z} \in \mathcal{P}_{n}$ so \mathcal{P}_{n} is convex.

7. Vector Calculus ($\mathbf{1 2} \mathbf{~ p t s}$)

(a) (6 pts) Let $A \in \mathbb{S}^{n}$ be an $n \times n$ symmetric matrix. Compute the gradient with respect to \vec{x} of the function $f: \mathbb{R}^{n} \backslash\{\overrightarrow{0}\} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
f(\vec{x}) \doteq \frac{\vec{x}^{\top} A \vec{x}}{\vec{x}^{\top} \vec{x}} \tag{14}
\end{equation*}
$$

Show your work.
HINT: Recall the quotient rule for finding the gradient of $h(\vec{x})=\frac{n(\vec{x})}{d(\vec{x})}$ where n and d are scalar-valued functions:

$$
\begin{equation*}
\nabla h(\vec{x})=\frac{d(\vec{x}) \nabla n(\vec{x})-n(\vec{x}) \nabla d(\vec{x})}{(d(\vec{x}))^{2}} . \tag{15}
\end{equation*}
$$

Solution: Define $n(\vec{x})=\vec{x}^{\top} A \vec{x}$ and $d(\vec{x})=\vec{x}^{\top} \vec{x}$. The gradients of these functions are

$$
\begin{align*}
& \nabla n(\vec{x})=\left(A+A^{\top}\right) \vec{x}=2 A \vec{x} \tag{16}\\
& \nabla d(\vec{x})=2 \vec{x} \tag{17}
\end{align*}
$$

Then $f(\vec{x})=\frac{n(\vec{x})}{d(\vec{x})}$, so we have

$$
\begin{aligned}
\nabla f(\vec{x}) & =\frac{d(\vec{x}) \nabla n(\vec{x})-n(\vec{x}) \nabla d(\vec{x})}{(d(\vec{x}))^{2}} \\
& =\frac{\left[\vec{x}^{\top} \vec{x}\right][2 A \vec{x}]-\left[\vec{x}^{\top} A \vec{x}\right][2 \vec{x}]}{\left(\vec{x}^{\top} \vec{x}\right)^{2}} \\
& =2 \frac{A \vec{x} \vec{x}^{\top} \vec{x}-\vec{x}^{\top} A \vec{x}}{\left(\vec{x}^{\top} \vec{x}\right)^{2}} \\
& =\frac{2}{\vec{x}^{\top} \vec{x}}\left(A-\frac{\vec{x}^{\top} A \vec{x}}{\vec{x}^{\top} \vec{x}} I\right) \vec{x} .
\end{aligned}
$$

(b) (6 pts) Let $\vec{u} \in \mathbb{R}^{n}$. Compute the Jacobian with respect to \vec{x} of the function $\vec{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
\begin{equation*}
\vec{g}(\vec{x}) \doteq \vec{x}\left(\vec{x}^{\top} \vec{u}\right) \tag{18}
\end{equation*}
$$

Show your work.
Solution: Define $h(\vec{x})=\vec{u}^{\top} \vec{x}$. Then $\frac{\partial h}{\partial x_{i}}(\vec{x})=u_{i}$. Also, define $g_{i}(\vec{x})=h(\vec{x}) x_{i}$ and we can compute the partial derivatives as:

$$
\begin{align*}
\frac{\partial g_{i}}{\partial x_{i}}(\vec{x}) & =h(\vec{x})+x_{i} \frac{\partial h}{\partial x_{i}}(\vec{x})=\vec{u}^{\top} \vec{x}+u_{i} x_{i} \tag{19}\\
\frac{\partial g_{i}}{\partial x_{j}}(\vec{x}) & =x_{i} \frac{\partial h}{\partial x_{j}}(\vec{x})=x_{i} u_{j} \tag{20}
\end{align*}
$$

If we stack these partial derivatives in a Jacobian matrix it follows that:

$$
\begin{equation*}
D \vec{g}(\vec{x})=\vec{x} \vec{u}^{\top}+\left(\vec{u}^{\top} \vec{x}\right) I \tag{21}
\end{equation*}
$$

8. Gradient Descent (18 pts)

Let $\vec{y} \in \mathbb{R}^{n}$ be a fixed and known vector. In this problem we will use gradient descent to solve the following problem:

$$
\begin{gather*}
\min _{\vec{x} \in \mathbb{R}^{n}} f_{0}(\vec{x}) \tag{22}\\
\text { where } \quad \tag{23}\\
f_{0}(\vec{x}) \doteq \frac{1}{2}\|\vec{x}-\vec{y}\|_{2}^{2} .
\end{gather*}
$$

(a) (4 pts) Is $f_{0}(\vec{x})$ a convex function? Justify your answer.

Solution: We compute

$$
\begin{equation*}
\nabla f_{0}(\vec{x})=\vec{x}-\vec{y} \quad \text { and } \quad \nabla^{2} f_{0}(\vec{x})=I \tag{24}
\end{equation*}
$$

Thus, the objective function is convex as its Hessian is I, which is PSD.

We run gradient descent on f_{0} with step size $\eta>0$ and initialization \vec{x}_{0}, obtaining the iterates $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \ldots$
(b) (5 pts) Prove that for each $t \geq 0$ we have

$$
\begin{equation*}
\vec{x}_{t}-\vec{y}=(1-\eta)^{t}\left(\vec{x}_{0}-\vec{y}\right) . \tag{25}
\end{equation*}
$$

Solution: We have

$$
\begin{align*}
\vec{x}_{t+1} & =\vec{x}_{t}-\eta \nabla f_{0}\left(\vec{x}_{t}\right) \tag{26}\\
& =\vec{x}_{t}-\eta\left(\vec{x}_{t}-\vec{y}\right) \tag{27}\\
& =(1-\eta) \vec{x}_{t}+\eta \vec{y} . \tag{28}
\end{align*}
$$

Then subtracting \vec{y} from both sides, we get

$$
\begin{align*}
\vec{x}_{t+1}-\vec{y} & =(1-\eta) \vec{x}_{t}+\eta \vec{y}-\vec{y} \tag{29}\\
& =(1-\eta) \vec{x}_{t}-(1-\eta) \vec{y} \tag{30}\\
& =(1-\eta)\left(\vec{x}_{t}-\vec{y}\right) . \tag{31}
\end{align*}
$$

By induction we have

$$
\begin{equation*}
\vec{x}_{t}-\vec{y}=(1-\eta)^{t}\left(\vec{x}_{0}-\vec{y}\right) . \tag{32}
\end{equation*}
$$

(c) (4 pts) Determine the range of $\eta \in \mathbb{R}$ such that, for all initializations \vec{x}_{0}, we have $\vec{x}_{1}=\vec{y}$. Justify your answer.

Solution: We have

$$
\begin{equation*}
\vec{x}_{1}-\vec{y}=(1-\eta)\left(\vec{x}_{0}-\vec{y}\right) . \tag{33}
\end{equation*}
$$

For this to be $\overrightarrow{0}$ for all choices of \vec{x}_{0} we must have $1-\eta=0$, i.e., $\eta=1$.
(d) (5 pts) Determine the range of $\eta \in \mathbb{R}$ such that, for all initializations \vec{x}_{0} and all $t \geq 0$, we have that \vec{x}_{t} is a convex combination of \vec{x}_{0} and \vec{y}. Justify your answer.
HINT: What happens if we add \vec{y} to both sides of (25)?

Solution: We have

$$
\begin{aligned}
\vec{x}_{t} & =(1-\eta)^{t}\left(\vec{x}_{0}-\vec{y}\right)+\vec{y} \\
& =(1-\eta)^{t} \vec{x}_{0}+\left(1-(1-\eta)^{t}\right) \vec{y} .
\end{aligned}
$$

This is a convex combination if and only if $(1-\eta)^{t} \in[0,1]$. If t is even then $(1-\eta)^{t} \in[0,1]$ if and only if $1-\eta \in[-1,1]$ if and only if $\eta \in[0,2]$. If t is odd then $(1-\eta)^{t} \in[0,1]$ if and only if $1-\eta \in[0,1]$ if and only if $\eta \in[0,1]$. Since we want $(1-\eta)^{t} \in[0,1]$ for all t, this is true if and only if $\eta \in[0,1] \cap[0,2]=[0,1]$.

9. Shift Matrix (10 pts)

Let $V \in \mathbb{R}^{n \times n}$ be a square orthonormal matrix, i.e., its columns are orthogonal and have norm 1 :

$$
V=\left[\begin{array}{ccccc}
\uparrow & \uparrow & \ldots & \uparrow & \uparrow \tag{34}\\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n-1} & \vec{v}_{n} \\
\downarrow & \downarrow & \ldots & \downarrow & \downarrow
\end{array}\right] .
$$

Now, we define the shifted matrix $W \in \mathbb{R}^{n \times n}$, which is composed of the columns of V shifted to the left by 1 index and padded by a zero vector:

$$
W=\left[\begin{array}{ccccc}
\uparrow & \uparrow & \ldots & \uparrow & \uparrow \tag{35}\\
\vec{v}_{2} & \vec{v}_{3} & \ldots & \vec{v}_{n} & \overrightarrow{0} \\
\downarrow & \downarrow & \ldots & \downarrow & \downarrow
\end{array}\right] .
$$

(a) (4 pts) What is $\operatorname{rank}(V)$? What about $\operatorname{rank}(W)$? You do not need to justify your answers.

Solution: V is orthogonal, so it has full column rank. Therefore $\operatorname{rank}(V)=n$. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of n linearly independent vectors, $\left\{v_{2}, \ldots, v_{n}\right\}$ is a set of $n-1$ linearly independent vectors. $\overrightarrow{0}$ is linearly dependent to all other vectors, so there are just $n-1$ linearly independent columns of W. Therefore $\operatorname{rank}(W)=n-1$.
(b) (6 pts) Find a basis for the null space of $V-W$ and compute $\operatorname{rank}(V-W)$. Show your work.

HINT: Write out the definition of null space for $V-W$.
Solution: Suppose $\vec{x} \in \mathcal{N}(V-W)$. Then,

$$
\begin{align*}
\overrightarrow{0} & =(V-W) \vec{x} \tag{36}\\
\Longrightarrow \overrightarrow{0} & =\left[\sum_{i=1}^{n-1} x_{i}\left(\vec{v}_{i}-\vec{v}_{i+1}\right)\right]+x_{n} \vec{v}_{n} \tag{37}\\
\Longrightarrow \overrightarrow{0} & =x_{1} \vec{v}_{1}+\left[\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right) \vec{v}_{i+1}\right] \tag{38}
\end{align*}
$$

Since v_{i} are all linearly independent, this implies that $x_{n}=\ldots=x_{1}=0$, which means that the null space is trivial. By rank-nullity, this means that $\operatorname{rank}(V-W)=n-\operatorname{dim}(\mathcal{N}(V-W))=n$

10. Symmetric Matrices ($\mathbf{1 0} \mathbf{~ p t s}$)

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.
(a) (4 pts) Prove that if A is symmetric then $A^{2 k}$ is symmetric positive semidefinite for all integers $k>1$.

Solution: Many different proofs. Diagonalizing A we get $A=U \Lambda U^{\top}$. Then $A^{k}=U \Lambda^{2 k} U^{\top}$ and $\Lambda^{2 k} \succeq 0$.
(b) (6 pts) Prove that if A is symmetric then its matrix exponential, defined as $\mathrm{e}^{A} \in \mathbb{R}^{n \times n}$ given by

$$
\begin{equation*}
\mathrm{e}^{A}=I+A+\frac{1}{2} A^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} \tag{39}
\end{equation*}
$$

is symmetric positive definite.

HINT: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\mathrm{e}^{x}$ has the series definition

$$
\begin{equation*}
\mathrm{e}^{x}=1+x+\frac{1}{2} x^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} \tag{40}
\end{equation*}
$$

Solution: Diagonalizing $A=U \Lambda U^{\top}$, we get

$$
\begin{align*}
& \mathrm{e}^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} \tag{41}\\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(U \Lambda U^{\top}\right)^{k} \tag{42}\\
& =\sum_{k=0}^{\infty} \frac{1}{k!} U \Lambda^{k} U^{\top} \tag{43}\\
& =U\left(\sum_{k=0}^{\infty} \frac{1}{k!} \Lambda^{k}\right) U^{\top} \tag{44}\\
& =U\left(\sum_{k=0}^{\infty} \frac{1}{k!}\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]^{k}\right) U^{\top} \tag{45}\\
& =U\left[\begin{array}{lll}
\sum_{k=0}^{\infty} \frac{\lambda_{1}^{k}}{k!} & & \\
& \ddots & \\
& & \sum_{k=0}^{\infty} \frac{\lambda_{n}^{k}}{k!}
\end{array}\right] U^{\top} \tag{46}\\
& =U\left[\begin{array}{lll}
\mathrm{e}^{\lambda_{1}} & & \\
& \ddots & \\
& & \mathrm{e}^{\lambda_{n}}
\end{array}\right] U^{\top} . \tag{47}
\end{align*}
$$

This is a symmetric matrix whose eigenvalues are $\mathrm{e}^{\lambda_{i}}>0$, hence it is positive definite.

11. Second Principal Component (8 pts)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalue-eigenvector pairs given by $\left(\lambda_{1}, \vec{v}_{1}\right), \ldots,\left(\lambda_{n}, \vec{v}_{n}\right)$, where $\lambda_{1}>\cdots>\lambda_{n}$. Consider the problem

$$
\begin{align*}
p^{\star}=\max _{\vec{x} \in \mathbb{R}^{n}} & \vec{x}^{\top} A \vec{x} \tag{48}\\
\text { s.t. } & \|\vec{x}\|_{2}^{2}=1 \\
& \vec{x}^{\top} \vec{v}_{1}=0 .
\end{align*}
$$

Show that $p^{\star}=\lambda_{2}$. Prove your answer.
HINT: First find an \vec{x} which is feasible and $\vec{x}^{\top} A \vec{x}=\lambda_{2}$. Then show that $p^{\star} \leq \lambda_{2}$.
Solution: Note that $\vec{x}=\vec{v}_{2}$ is feasible since $\left\|\vec{v}_{2}\right\|=1$ and ${\overrightarrow{v_{2}}}^{\top} \vec{v}_{1}=0$ because \vec{v}_{1} and \vec{v}_{1} are vectors of distinct eigenspaces. Since $\vec{v}_{2}^{\top} A \vec{v}_{2}=\lambda_{2}$, we are done if we can show that $p^{\star} \leq \lambda_{2}$.

Note that $\vec{v}_{1}, \ldots, \vec{v}_{n}$ form an orthonormal eigenbasis by the spectral theorem, which furnishes A with an orthonormal diagonalization $A=V \Lambda V^{\top}$, where $V=\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{n}\end{array}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For \vec{x} to be feasible, we require that $\vec{x}^{\top} \vec{v}_{1}=0$ which implies that $\vec{x} \in \operatorname{span}\left(\vec{v}_{1}\right)^{\perp}=\operatorname{span}\left(\vec{v}_{2}, \ldots, \vec{v}_{n}\right)$. Hence, we can represent \vec{x} as a linear combination:

$$
\vec{x}=y_{2} \vec{v}_{2}+\cdots+y_{n} \vec{v}_{n}=\left[\begin{array}{lll}
\vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{c}
y_{2} \tag{49}\\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=V \vec{y}
$$

where

$$
\vec{y}=\left[\begin{array}{c}
0 \tag{50}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Combining everything,

$$
\begin{align*}
\vec{x}^{\top} A \vec{x} & =\vec{x}^{\top} V \Lambda V^{\top} \vec{x} \tag{51}\\
& =\vec{y}^{\top} V^{\top} V \Lambda V^{\top} V \vec{y} \tag{52}\\
& =\vec{y}^{\top} \Lambda \vec{y} \tag{53}
\end{align*}
$$

$$
=\left[\begin{array}{llll}
0 & y_{2} & \cdots & y_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \tag{54}\\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

$$
\begin{equation*}
=\sum_{i=2}^{n} \lambda_{i} y_{i}^{2} \tag{55}
\end{equation*}
$$

Since V is orthonormal, we have $\|\vec{y}\|_{2}=\left\|V^{\top} \vec{x}\right\|_{2}=\|\vec{x}\|_{2}$, so the optimization problem above can be restated as

$$
\begin{equation*}
p^{\star}=\max _{\substack{\vec{y} \in \mathbb{R}^{n} \\\|\vec{y}\|_{2}=1 \\ y_{1}=0}} \vec{y}^{\top} \Lambda \vec{y} \tag{56}
\end{equation*}
$$

Print your student ID:

$$
\begin{align*}
& =\max _{\substack{\vec{y} \in \mathbb{R}^{n} \\
\|\vec{y}\|_{2}=1 \\
y_{1}=0}} \sum_{i=2}^{n} \lambda_{i} y_{i}^{2} \tag{57}\\
& \leq \lambda_{2} \cdot \max _{\substack{\vec{y} \in \mathbb{R}^{n} \\
\|\vec{y}\|_{2}=1 \\
y_{1}=0}} \sum_{i=2}^{n} y_{i}^{2} \tag{58}\\
& =\lambda_{2} \cdot \max _{\substack{\vec{y} \in \mathbb{R}^{n} \\
\|\vec{y}\|_{2}=1 \\
y_{1}=0}}\|\vec{y}\|_{2}^{2} \tag{59}\\
& =\lambda_{2} \cdot 1 \\
& =\lambda_{2} . \tag{60}
\end{align*}
$$

Thus, $p^{\star} \leq \lambda_{2}$ and we are done.

12. Block Ridge Regression ($\mathbf{1 3} \mathbf{~ p t s}$)

In this problem, we consider a certain generalization of ridge regression. For $d>0$, let $A \in \mathbb{R}^{n \times(3 d)}$ and $y \in \mathbb{R}^{n}$. Let $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3} \in \mathbb{R}^{d}$ be three vectors, each of dimension d. We associate regularization parameter λ_{i}^{2} to each vector \vec{x}_{i}. We stack the \vec{x}_{i} up to get a long $3 d$-dimensional vector $\vec{x} \in \mathbb{R}^{3 d}$:

$$
\vec{x}=\left[\begin{array}{l}
\vec{x}_{1} \tag{62}\\
\vec{x}_{2} \\
\vec{x}_{3}
\end{array}\right] .
$$

With this notation, the block ridge regression problem is

$$
\begin{align*}
\vec{x}_{\mathrm{BRR}} & =\underset{\vec{x} \in \mathbb{R}^{3 d}}{\operatorname{argmin}} f_{0}(\vec{x}) \tag{63}\\
\text { where } \quad f_{0}(\vec{x}) & \doteq\|A \vec{x}-\vec{y}\|_{2}^{2}+\sum_{i=1}^{3} \lambda_{i}^{2}\left\|\overrightarrow{x_{i}}\right\|_{2}^{2} \tag{64}\\
& =\|A \vec{x}-\vec{y}\|_{2}^{2}+\|D \vec{x}\|_{2}^{2} \quad \text { for } \quad D=\left[\begin{array}{lll}
\lambda_{1} I_{d} & 0_{d \times d} & 0_{d \times d} \\
0_{d \times d} & \lambda_{2} I_{d} & 0_{d \times d} \\
0_{d \times d} & 0_{d \times d} & \lambda_{3} I_{d}
\end{array}\right] . \tag{65}
\end{align*}
$$

(a) (6 pts) Compute $\nabla f_{0}(\vec{x})$. Show your work.

Solution: We have that the gradients in \vec{x} are

$$
\begin{align*}
\nabla\|A \vec{x}-\vec{y}\|_{2}^{2} & =2 A^{\top}(A \vec{x}-\vec{y})=2 A^{\top} A x-2 A^{\top} \vec{y} \tag{66}\\
\nabla\|D \vec{x}\|_{2}^{2} & =2 D^{\top} D \vec{x}=2 D^{2} \vec{x} . \tag{67}
\end{align*}
$$

Thus summing them up, we get that the gradient is

$$
\begin{equation*}
\nabla f_{0}(\vec{x})=2\left(A^{\top} A \vec{x}-A^{\top} y+D \vec{x}\right)=2\left(A^{\top} A+D^{2}\right) \vec{x}-2 A^{\top} \vec{y} . \tag{68}
\end{equation*}
$$

(b) (7 pts) Recall the solution to the ridge regression problem given in class, i.e., $\vec{x}_{\mathrm{RR}}=\left(A^{\top} A+\lambda I\right)^{-1} A^{\top} \vec{y}$. Give an expression for \vec{x}_{BRR} that is similar in structure to the expression for \vec{x}_{RR}. Justify your answer.

Solution: The Hessian of f_{0} is

$$
\begin{equation*}
\nabla^{2} f_{0}(\vec{x})=2 A^{\top} A+2 D^{2} . \tag{69}
\end{equation*}
$$

We claim that it is PD. Indeed, for $\vec{w} \neq \overrightarrow{0}$, we have

$$
\begin{align*}
\vec{w}^{\top}\left[\nabla^{2} f_{0}(\vec{x})\right] \vec{w} & =\vec{w}^{\top}\left(2 A^{\top} A+2 D^{2}\right) \vec{w} \tag{70}\\
& =2 \vec{w}^{\top} A^{\top} A \vec{w}+2 \vec{w}^{\top} D^{2} \vec{w} \tag{71}\\
& =2 \underbrace{\|A \vec{w}\|_{2}^{2}}_{\geq 0}+2 \underbrace{\|D \vec{w}\|_{2}^{2}}_{>0} \tag{72}\\
& >0 . \tag{73}
\end{align*}
$$

Thus $\nabla^{2} f_{0}(\vec{x})$ is PD. Moreover, $A^{\top} A+D^{2}$ has all positive eigenvalues and so is invertible.
The former fact gives that f_{0} is convex. Thus we can take the gradient and set it to 0 to obtain the solution. We get

$$
\begin{equation*}
\overrightarrow{0}=\nabla f_{0}\left(\vec{x}_{\mathrm{BRR}}\right) \tag{74}
\end{equation*}
$$

Print your student ID:

$$
\begin{align*}
& =2\left(A^{\top} A+D^{2}\right) \vec{x}_{\mathrm{BRR}}-2 A^{\top} \vec{y} \tag{75}\\
\Longrightarrow\left(A^{\top} A+D^{2}\right) \vec{x}_{\mathrm{BRR}} & =A^{\top} \vec{y} \tag{76}\\
\Longrightarrow \vec{x}_{\mathrm{BRR}} & =\left(A^{\top} A+D^{2}\right)^{-1} A^{\top} \vec{y} . \tag{77}
\end{align*}
$$

13. Low-Rank Matrix Completion (28 pts)

Consider a matrix $A \in \mathbb{R}^{m \times n}$. If some entries are corrupted, one principled way to identify A is to find the matrix $B \in \mathbb{R}^{m \times n}$ of minimal rank that agrees with A on all known entries. This can be formulated as an optimization problem whose objective function is $\operatorname{rank}(B)$. Because the $\operatorname{rank}(\cdot)$ function is not continuous, we use the intuition that a low-rank matrix will only have a few nonzero singular values, and instead use the sum-of-singular-values function as the objective:

$$
\begin{equation*}
f(B) \doteq \sum_{i=1}^{\operatorname{rank}(B)} \sigma_{i}\{B\} \tag{78}
\end{equation*}
$$

where $\sigma_{i}\{B\}$ is the $i^{\text {th }}$ largest singular value of B. In this problem we will explore some properties of f.
(a) (8 pts) Prove that

$$
\begin{equation*}
f(B) \leq \max _{\substack{C \in \mathbb{R}^{m \times n} \\\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B\right) \tag{79}
\end{equation*}
$$

Here $\operatorname{tr}(\cdot)$ is the trace, which for a matrix $X \in \mathbb{R}^{m \times n}$ with entries $X_{i j}$ is $\operatorname{tr}(X)=\sum_{i=1}^{\min \{m, n\}} X_{i i}$.
HINT: Expand B into its SVD. Try to find a $D \in \mathbb{R}^{m \times n}$ such that $\|D\|_{2}=1$ and $\operatorname{tr}\left(D^{\top} B\right)=f(B)$.
HINT: You may use the cyclic property of traces without proof. If $X Y Z$ and $Z X Y$ are valid matrix products then $\operatorname{tr}(X Y Z)=\operatorname{tr}(Z X Y)$.
Solution: Let $r \doteq \operatorname{rank}(B)$. Let $B=U_{r} \Sigma_{r} V_{r}^{\top}$ be the compact SVD of B. Let $D=U_{r} V_{r}^{\top}$. Then $\|D\|_{2}=1$, so

$$
\begin{align*}
\max _{\substack{C \in \mathbb{R}^{m \times n} \\
\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B\right) & \geq \operatorname{tr}\left(D^{\top} B\right) \tag{80}\\
& =\operatorname{tr}\left(V_{r} U_{r}^{\top} U_{r} \Sigma_{r} V_{r}^{\top}\right) \tag{81}\\
& =\operatorname{tr}\left(V_{r} \Sigma_{r} V_{r}^{\top}\right) \tag{82}\\
& =\operatorname{tr}\left(V_{r}^{\top} V_{r} \Sigma_{r}\right) \tag{83}\\
& =\operatorname{tr}\left(\Sigma_{r}\right) \tag{84}\\
& =\sum_{i=1}^{r} \sigma_{i}\{B\} \tag{85}\\
& =f(B) . \tag{86}
\end{align*}
$$

(b) (9 pts) Prove that

$$
\begin{equation*}
f(B) \geq \max _{\substack{C \in \mathbb{R}^{m \times n} \\\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B\right) \tag{87}
\end{equation*}
$$

Here $\operatorname{tr}(\cdot)$ is the trace, which for a matrix $X \in \mathbb{R}^{m \times n}$ with entries $X_{i j}$ is $\operatorname{tr}(X)=\sum_{i=1}^{\min \{m, n\}} X_{i i}$.
HINT: Let $r \doteq \operatorname{rank}(B)$ and expand B into its outer product SVD, i.e., $B=\sum_{i=1}^{r} \sigma_{i}\{B\} \vec{u}_{i} \vec{v}_{i}^{\top}$.
HINT: You may use the cyclic and linearity properties of traces without proof. If $X Y Z$ and $Z X Y$ are valid matrix products then $\operatorname{tr}(X Y Z)=\operatorname{tr}(Z X Y)$. Also, $\operatorname{tr}(\alpha X+\beta Y)=\alpha \operatorname{tr}(X)+\beta \operatorname{tr}(Y)$ for $\alpha, \beta \in \mathbb{R}$.

Solution: Let $r=\operatorname{rank}(B)$. Let $B=\sum_{i=1}^{r} \sigma_{i}\{B\} \vec{u}_{i} \vec{v}_{i}^{\top}$ be an outer product SVD of B. For any $C \in \mathbb{R}^{m \times n}$ such that $\|C\|_{2} \leq 1$, we have

$$
\begin{align*}
\operatorname{tr}\left(C^{\top} B\right) & =\operatorname{tr}\left(C^{\top}\left(\sum_{i=1}^{r} \sigma_{i}\{B\} \vec{u}_{i} \vec{v}_{i}^{\top}\right)\right) \tag{88}\\
& =\operatorname{tr}\left(\sum_{i=1}^{r} \sigma_{i}\{B\} C^{\top} \vec{u}_{i} \vec{v}_{i}^{\top}\right) \tag{89}\\
& =\sum_{i=1}^{r} \sigma_{i}\{B\} \operatorname{tr}\left(C^{\top} \vec{u}_{i} \vec{v}_{i}^{\top}\right) \tag{90}\\
& =\sum_{i=1}^{r} \sigma_{i}\{B\} \operatorname{tr}\left(\vec{v}_{i}^{\top} C^{\top} \vec{u}_{i}\right) \tag{91}\\
& =\sum_{i=1}^{r} \sigma_{i}\{B\}\left(\vec{v}_{i}^{\top} C^{\top} \vec{u}_{i}\right) \tag{92}\\
& \leq \sum_{i=1}^{r} \sigma_{i}\{B\}\left\|C \vec{v}_{i}\right\|_{2}\left\|\vec{u}_{i}\right\|_{2} \tag{93}\\
& \leq \sum_{i=1}^{r} \sigma_{i}\{B\} \underbrace{\|C\|_{2}}_{\leq 1} \underbrace{\left\|\vec{v}_{i}\right\|_{2}}_{=1} \underbrace{\left\|\vec{u}_{i}\right\|_{2}}_{=1} \tag{94}\\
& \leq \sum_{i=1}^{r} \sigma_{i}\{B\} \tag{95}\\
& =f(B) . \tag{96}
\end{align*}
$$

This holds for all C such that $\|C\|_{2} \leq 1$, so taking the max over C gets

$$
\begin{equation*}
f(B) \geq \max _{\substack{C \in \mathbb{R}^{m \times n} \\\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B\right) \tag{97}
\end{equation*}
$$

as desired.
From parts (a) and (b) together, we can conclude that

$$
\begin{equation*}
f(B)=\max _{\substack{C \in \mathbb{R}^{m \times n} \\\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B\right) \tag{98}
\end{equation*}
$$

Here $\operatorname{tr}(\cdot)$ is the trace, which for a matrix $X \in \mathbb{R}^{m \times n}$ with entries $X_{i j}$ is $\operatorname{tr}(X)=\sum_{i=1}^{\min \{m, n\}} X_{i i}$.
(c) (6 pts) Show that for all $B_{1}, B_{2} \in \mathbb{R}^{m \times n}$ we have

$$
\begin{equation*}
f\left(B_{1}+B_{2}\right) \leq f\left(B_{1}\right)+f\left(B_{2}\right) \tag{99}
\end{equation*}
$$

i.e., the function f satisfies the triangle inequality.

HINT: Use the characterization of f given by (98). Also, you may use the linearity property of traces without proof, i.e., $\operatorname{tr}(\alpha X+\beta Y)=\alpha \operatorname{tr}(X)+\beta \operatorname{tr}(Y)$ for $\alpha, \beta \in \mathbb{R}$.
Solution: We have

$$
\begin{equation*}
f\left(B_{1}+B_{2}\right)=\max _{\substack{C \in \mathbb{R}^{m \times n} \\\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top}\left(B_{1}+B_{2}\right)\right) \tag{100}
\end{equation*}
$$

$$
\begin{align*}
& =\max _{\substack{C \in \mathbb{R}^{m \times n} \\
\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B_{1}+C^{\top} B_{2}\right) \tag{101}\\
& =\max _{\substack{C \in \mathbb{R}^{m \times n} \\
\|C\|_{2} \leq 1}}\left\{\operatorname{tr}\left(C^{\top} B_{1}\right)+\operatorname{tr}\left(C^{\top} B_{2}\right)\right\} \tag{102}\\
& \leq \max _{\substack{C \in \mathbb{R}^{m \times n} \\
\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B_{1}\right)+\max _{\substack{C \in \mathbb{R}^{m \times n} \\
\|C\|_{2} \leq 1}} \operatorname{tr}\left(C^{\top} B_{2}\right) \tag{103}\\
& =f\left(B_{1}\right)+f\left(B_{2}\right) . \tag{104}
\end{align*}
$$

Indeed, f is a norm; note that f is called the nuclear norm, and it is quite relevant in signal processing. The reason that the nuclear norm is a good approximation to the rank function is because the nuclear norm is the so-called convex envelope of the rank function - the largest convex function which is a lower bound to the rank function. Intuitively a low-rank matrix should have only a few nonzero singular values, and the nuclear norm promotes this behavior. This has the same geometric picture as LASSO - using the ℓ^{1} norm objective function to enforce that the solution has only a few nonzero entries - which we will explore later in the class.
(d) (5 pts) Is f a convex function? If yes, prove it. If no, justify your answer using an example.

HINT: You can use without proof the fact that $f(\alpha B)=|\alpha| f(B)$ for all $\alpha \in \mathbb{R}$ and $B \in \mathbb{R}^{m \times n}$.
Solution: Yes, f is convex; the triangle inequality and the hint give

$$
\begin{equation*}
f\left(\theta B_{1}+(1-\theta) B_{2}\right) \leq f\left(\theta B_{1}\right)+f\left((1-\theta) B_{2}\right)=\theta f\left(B_{1}\right)+(1-\theta) f\left(B_{2}\right) \tag{105}
\end{equation*}
$$

for $B_{1}, B_{2} \in \Omega$ and $\theta \in[0,1]$.

