
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2023
Midterm

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow
the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution:

2. SID (3 pts)

When the exam starts, write your SID at the top of every page. No extra time will be given for this task.

3. Favorites. Any answer, as long as you write it down, will be given full credit. (2 pts)

(a) (1 pts) What’s your favorite restaurant in Berkeley?
Solution: Any answer is fine.

(b) (1 pts) What’s some music that makes you happy?
Solution: Any answer is fine.
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4. Rank 1 Approximation Error (7 pts)

Consider a 2 × 2 matrix

A =
[

−4 8
7 1

]
. (1)

The eigenvalue-eigenvector pairs of A⊤A are

(λ1, v⃗1) =
(

90,

[
1/

√
2

−1/
√

2

])
, (λ2, v⃗2) =

(
40,

[
1/

√
2

1/
√

2

])
. (2)

(a) (3 pts) What are the singular values of the matrix A? You do not have to justify your answer.

HINT: You should not have to do much computation here.

Solution: We have that σi{A} =
√

λi{A⊤A} by definition. Hence σ1{A} =
√

90 and σ2{A} =
√

40.

(b) (4 pts) For A as given in (1) with A⊤A as given in (2), consider the following problem:

p⋆ = min
B∈R2×2

rank(B)=1

∥A − B∥2
F . (3)

What is the value of p⋆? Justify your answer.

HINT: You should not have to do any computation at all here.

Solution: The rank 1 approximation minimizing the Frobenius norm error of a matrix A =
n∑

i=1
σi{A}uiv

⊤
i

is σ1{A}u1v⊤
1 . Hence the squared Frobenius norm error for the best rank 1 approximation is

n∑
i=2

σi{A}2.

In our case, since the matrix is 2 × 2, this error just becomes σ2{A}2 = 40.
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5. ℓ∞ Constraint (7 pts)

Consider the optimization problem

min
x⃗∈R2

[
1

−1

]⊤

x⃗ (4)

s.t. ∥x⃗∥∞ ≤ 1 (5)[
−1
1

]⊤

x⃗ ≤ −1, (6)

where x⃗ =
[

x1

x2

]
.

(a) (4 pts) Sketch the feasible region of the above optimization problem in the graph provided below.
Label each constraint.
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Solution:
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Here the first constraint is in red, the second constraint is in blue, and the overall feasible region is the green
polygon.

(b) (3 pts) Sketch the 2-level set, the 0-level set, and the −2-level set of the objective function in (4). Label
each set.
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Solution:
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We see here the level sets of the objective function – the −2-level set in purple, the 0-level set in black, and
the 2-level set in red.
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6. Convexity of the Probability Simplex (5 pts)

Let n be a positive integer. The probability simplex on Rn, denoted Pn, is the set

Pn =
{

x⃗ ∈ Rn

∣∣∣∣∣ xi ≥ 0 ∀i,

n∑
i=1

xi = 1
}

where x⃗ =


x1
...

xn

 . (7)

Is Pn convex? If yes, prove it. If no, justify your answer using an example.

Solution: Yes, Pn is convex. Let x⃗, y⃗ ∈ Pn let θ ∈ [0, 1], and define z⃗ = θx⃗ + (1 − θ)y⃗. We show that z⃗ ∈ Pn.
Indeed,

zi = θ︸︷︷︸
≥0

xi︸︷︷︸
≥0

+ (1 − θ)︸ ︷︷ ︸
≥0

yi︸︷︷︸
≥0

(8)

≥ 0. (9)
n∑

i=1
zi =

n∑
i=1

(θxi + (1 − θ)yi) (10)

=
n∑

i=1
θxi +

n∑
i=1

(1 − θ)yi (11)

= θ

n∑
i=1

xi︸ ︷︷ ︸
=1

+(1 − θ)
n∑

i=1
yi︸ ︷︷ ︸

=1

(12)

= θ + (1 − θ) = 1. (13)

Thus z⃗ ∈ Pn so Pn is convex.
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7. Vector Calculus (12 pts)

(a) (6 pts) Let A ∈ Sn be an n × n symmetric matrix. Compute the gradient with respect to x⃗ of the
function f : Rn \ {⃗0} → R given by

f(x⃗) .= x⃗⊤Ax⃗

x⃗⊤x⃗
. (14)

Show your work.

HINT: Recall the quotient rule for finding the gradient of h(x⃗) = n(x⃗)
d(x⃗) where n and d are scalar-valued

functions:

∇h(x⃗) = d(x⃗)∇n(x⃗) − n(x⃗)∇d(x⃗)
(d(x⃗))2 . (15)

Solution: Define n(x⃗) = x⃗⊤Ax⃗ and d(x⃗) = x⃗⊤x⃗. The gradients of these functions are

∇n(x⃗) = (A + A⊤)x⃗ = 2Ax⃗ (16)

∇d(x⃗) = 2x⃗. (17)

Then f(x⃗) = n(x⃗)
d(x⃗) , so we have

∇f(x⃗) = d(x⃗)∇n(x⃗) − n(x⃗)∇d(x⃗)
(d(x⃗))2

= [x⃗⊤x⃗][2Ax⃗] − [x⃗⊤Ax⃗][2x⃗]
(x⃗⊤x⃗)2

= 2Ax⃗x⃗⊤x⃗ − x⃗x⃗⊤Ax⃗

(x⃗⊤x⃗)2

= 2
x⃗⊤x⃗

(
A − x⃗⊤Ax⃗

x⃗⊤x⃗
I

)
x⃗.

(b) (6 pts) Let u⃗ ∈ Rn. Compute the Jacobian with respect to x⃗ of the function g⃗ : Rn → Rn given by

g⃗(x⃗) .= x⃗(x⃗⊤u⃗). (18)

Show your work.

Solution: Define h(x⃗) = u⃗⊤x⃗. Then ∂h
∂xi

(x⃗) = ui. Also, define gi(x⃗) = h(x⃗)xi and we can compute the
partial derivatives as:

∂gi

∂xi
(x⃗) = h(x⃗) + xi

∂h

∂xi
(x⃗) = u⃗⊤x⃗ + uixi (19)

∂gi

∂xj
(x⃗) = xi

∂h

∂xj
(x⃗) = xiuj . (20)

If we stack these partial derivatives in a Jacobian matrix it follows that:

Dg⃗(x⃗) = x⃗u⃗⊤ + (u⃗⊤x⃗)I. (21)
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8. Gradient Descent (18 pts)

Let y⃗ ∈ Rn be a fixed and known vector. In this problem we will use gradient descent to solve the following
problem:

min
x⃗∈Rn

f0(x⃗) (22)

where f0(x⃗) .= 1
2 ∥x⃗ − y⃗∥2

2 . (23)

(a) (4 pts) Is f0(x⃗) a convex function? Justify your answer.

Solution: We compute
∇f0(x⃗) = x⃗ − y⃗ and ∇2f0(x⃗) = I. (24)

Thus, the objective function is convex as its Hessian is I , which is PSD.

We run gradient descent on f0 with step size η > 0 and initialization x⃗0, obtaining the iterates x⃗1, x⃗2, x⃗3, . . ..

(b) (5 pts) Prove that for each t ≥ 0 we have

x⃗t − y⃗ = (1 − η)t(x⃗0 − y⃗). (25)

Solution: We have

x⃗t+1 = x⃗t − η∇f0(x⃗t) (26)

= x⃗t − η(x⃗t − y⃗) (27)

= (1 − η)x⃗t + ηy⃗. (28)

Then subtracting y⃗ from both sides, we get

x⃗t+1 − y⃗ = (1 − η)x⃗t + ηy⃗ − y⃗ (29)

= (1 − η)x⃗t − (1 − η)y⃗ (30)

= (1 − η)(x⃗t − y⃗). (31)

By induction we have
x⃗t − y⃗ = (1 − η)t(x⃗0 − y⃗). (32)

(c) (4 pts) Determine the range of η ∈ R such that, for all initializations x⃗0, we have x⃗1 = y⃗. Justify your
answer.

Solution: We have
x⃗1 − y⃗ = (1 − η)(x⃗0 − y⃗). (33)

For this to be 0⃗ for all choices of x⃗0 we must have 1 − η = 0, i.e., η = 1.

(d) (5 pts) Determine the range of η ∈ R such that, for all initializations x⃗0 and all t ≥ 0, we have that x⃗t

is a convex combination of x⃗0 and y⃗. Justify your answer.

HINT: What happens if we add y⃗ to both sides of (25)?
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Solution: We have

x⃗t = (1 − η)t(x⃗0 − y⃗) + y⃗

= (1 − η)tx⃗0 + (1 − (1 − η)t)y⃗.

This is a convex combination if and only if (1 − η)t ∈ [0, 1]. If t is even then (1 − η)t ∈ [0, 1] if and only if
1 − η ∈ [−1, 1] if and only if η ∈ [0, 2]. If t is odd then (1 − η)t ∈ [0, 1] if and only if 1 − η ∈ [0, 1] if and
only if η ∈ [0, 1]. Since we want (1−η)t ∈ [0, 1] for all t, this is true if and only if η ∈ [0, 1]∩[0, 2] = [0, 1].
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9. Shift Matrix (10 pts)

Let V ∈ Rn×n be a square orthonormal matrix, i.e., its columns are orthogonal and have norm 1:

V =

 ↑ ↑ . . . ↑ ↑
v⃗1 v⃗2 . . . v⃗n−1 v⃗n

↓ ↓ . . . ↓ ↓

 . (34)

Now, we define the shifted matrix W ∈ Rn×n, which is composed of the columns of V shifted to the left by 1
index and padded by a zero vector:

W =

 ↑ ↑ . . . ↑ ↑
v⃗2 v⃗3 . . . v⃗n 0⃗
↓ ↓ . . . ↓ ↓

 . (35)

(a) (4 pts) What is rank(V )? What about rank(W )? You do not need to justify your answers.

Solution: V is orthogonal, so it has full column rank. Therefore rank(V ) = n. Since {v1, . . . , vn} is
a set of n linearly independent vectors, {v2, . . . , vn} is a set of n − 1 linearly independent vectors. 0⃗ is
linearly dependent to all other vectors, so there are just n−1 linearly independent columns of W . Therefore
rank(W ) = n − 1.

(b) (6 pts) Find a basis for the null space of V − W and compute rank(V − W ). Show your work.

HINT: Write out the definition of null space for V − W .

Solution: Suppose x⃗ ∈ N (V − W ). Then,

0⃗ = (V − W )x⃗ (36)

=⇒ 0⃗ =
[

n−1∑
i=1

xi(v⃗i − v⃗i+1)
]

+ xnv⃗n (37)

=⇒ 0⃗ = x1v⃗1 +
[

n−1∑
i=1

(xi+1 − xi)v⃗i+1

]
(38)

Since vi are all linearly independent, this implies that xn = . . . = x1 = 0, which means that the null space
is trivial. By rank-nullity, this means that rank(V − W ) = n − dim(N (V − W )) = n
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10. Symmetric Matrices (10 pts)

Let A ∈ Rn×n be a square matrix.

(a) (4 pts) Prove that if A is symmetric then A2k is symmetric positive semidefinite for all integers k > 1.

Solution: Many different proofs. Diagonalizing A we get A = UΛU⊤. Then Ak = UΛ2kU⊤ and
Λ2k ⪰ 0.

(b) (6 pts) Prove that if A is symmetric then its matrix exponential, defined as eA ∈ Rn×n given by

eA = I + A + 1
2A2 + · · · =

∞∑
k=0

1
k!A

k (39)

is symmetric positive definite.
HINT: The function f : R → R given by f(x) = ex has the series definition

ex = 1 + x + 1
2x2 + · · · =

∞∑
k=0

1
k!x

k. (40)

Solution: Diagonalizing A = UΛU⊤, we get

eA =
∞∑

k=0

1
k!A

k (41)

=
∞∑

k=0

1
k! (UΛU⊤)k (42)

=
∞∑

k=0

1
k!UΛkU⊤ (43)

= U

( ∞∑
k=0

1
k!Λ

k

)
U⊤ (44)

= U


∞∑

k=0

1
k!


λ1

. . .
λn


k
U⊤ (45)

= U


∑∞

k=0
λk

1
k!

. . . ∑∞
k=0

λk
n

k!

U⊤ (46)

= U


eλ1

. . .
eλn

U⊤. (47)

This is a symmetric matrix whose eigenvalues are eλi > 0, hence it is positive definite.
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11. Second Principal Component (8 pts)

Let A ∈ Rn×n be a symmetric matrix with eigenvalue-eigenvector pairs given by (λ1, v⃗1), . . . , (λn, v⃗n), where
λ1 > · · · > λn. Consider the problem

p⋆ = max
x⃗∈Rn

x⃗⊤Ax⃗ (48)

s.t. ∥x⃗∥2
2 = 1

x⃗⊤v⃗1 = 0.

Show that p⋆ = λ2. Prove your answer.

HINT: First find an x⃗ which is feasible and x⃗⊤Ax⃗ = λ2. Then show that p⋆ ≤ λ2.

Solution: Note that x⃗ = v⃗2 is feasible since ∥v⃗2∥ = 1 and v⃗2
⊤v⃗1 = 0 because v⃗1 and v⃗1 are vectors of distinct

eigenspaces. Since v⃗⊤
2 Av⃗2 = λ2, we are done if we can show that p⋆ ≤ λ2.

Note that v⃗1, . . . , v⃗n form an orthonormal eigenbasis by the spectral theorem, which furnishes A with an orthonormal
diagonalization A = V ΛV ⊤, where V =

[
v⃗1 · · · v⃗n

]
and Λ = diag(λ1, . . . , λn). For x⃗ to be feasible, we require

that x⃗⊤v⃗1 = 0 which implies that x⃗ ∈ span(v⃗1)⊥ = span(v⃗2, . . . , v⃗n). Hence, we can represent x⃗ as a linear
combination:

x⃗ = y2v⃗2 + · · · + ynv⃗n =
[
v⃗2 · · · v⃗n

]
y2
...

yn

 =
[
v⃗1 v⃗2 · · · v⃗n

]


0
y2
...

yn

 = V y⃗ (49)

where

y⃗ =


0
y2
...

yn

 . (50)

Combining everything,

x⃗⊤Ax⃗ = x⃗⊤V ΛV ⊤x⃗ (51)

= y⃗⊤V ⊤V ΛV ⊤V y⃗ (52)

= y⃗⊤Λy⃗ (53)

=
[
0 y2 · · · yn

]
λ1

. . .
λn




0
y2
...

yn

 (54)

=
n∑

i=2
λiy

2
i . (55)

Since V is orthonormal, we have ∥y⃗∥2 =
∥∥V ⊤x⃗

∥∥
2 = ∥x⃗∥2, so the optimization problem above can be restated as

p⋆ = max
y⃗∈Rn

∥y⃗∥2=1
y1=0

y⃗⊤Λy⃗ (56)
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= max
y⃗∈Rn

∥y⃗∥2=1
y1=0

n∑
i=2

λiy
2
i (57)

≤ λ2 · max
y⃗∈Rn

∥y⃗∥2=1
y1=0

n∑
i=2

y2
i (58)

= λ2 · max
y⃗∈Rn

∥y⃗∥2=1
y1=0

∥y⃗∥2
2 (59)

= λ2 · 1 (60)

= λ2. (61)

Thus, p⋆ ≤ λ2 and we are done.
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12. Block Ridge Regression (13 pts)

In this problem, we consider a certain generalization of ridge regression. For d > 0, let A ∈ Rn×(3d) and
y ∈ Rn. Let x⃗1, x⃗2, x⃗3 ∈ Rd be three vectors, each of dimension d. We associate regularization parameter λ2

i

to each vector x⃗i. We stack the x⃗i up to get a long 3d-dimensional vector x⃗ ∈ R3d:

x⃗ =

x⃗1

x⃗2

x⃗3

 . (62)

With this notation, the block ridge regression problem is

x⃗BRR = argmin
x⃗∈R3d

f0(x⃗) (63)

where f0(x⃗) .= ∥Ax⃗ − y⃗∥2
2 +

3∑
i=1

λ2
i ∥x⃗i∥2

2 (64)

= ∥Ax⃗ − y⃗∥2
2 + ∥Dx⃗∥2

2 for D =

λ1Id 0d×d 0d×d

0d×d λ2Id 0d×d

0d×d 0d×d λ3Id

 . (65)

(a) (6 pts) Compute ∇f0(x⃗). Show your work.

Solution: We have that the gradients in x⃗ are

∇∥Ax⃗ − y⃗∥2
2 = 2A⊤(Ax⃗ − y⃗) = 2A⊤Ax − 2A⊤y⃗ (66)

∇ ∥Dx⃗∥2
2 = 2D⊤Dx⃗ = 2D2x⃗. (67)

Thus summing them up, we get that the gradient is

∇f0(x⃗) = 2(A⊤Ax⃗ − A⊤y + Dx⃗) = 2(A⊤A + D2)x⃗ − 2A⊤y⃗. (68)

(b) (7 pts) Recall the solution to the ridge regression problem given in class, i.e., x⃗RR = (A⊤A + λI)−1A⊤y⃗.
Give an expression for x⃗BRR that is similar in structure to the expression for x⃗RR. Justify your answer.

Solution: The Hessian of f0 is
∇2f0(x⃗) = 2A⊤A + 2D2. (69)

We claim that it is PD. Indeed, for w⃗ ̸= 0⃗, we have

w⃗⊤[∇2f0(x⃗)]w⃗ = w⃗⊤(2A⊤A + 2D2)w⃗ (70)

= 2w⃗⊤A⊤Aw⃗ + 2w⃗⊤D2w⃗ (71)

= 2 ∥Aw⃗∥2
2︸ ︷︷ ︸

≥0

+2 ∥Dw⃗∥2
2︸ ︷︷ ︸

>0

(72)

> 0. (73)

Thus ∇2f0(x⃗) is PD. Moreover, A⊤A + D2 has all positive eigenvalues and so is invertible.

The former fact gives that f0 is convex. Thus we can take the gradient and set it to 0 to obtain the solution.
We get

0⃗ = ∇f0(x⃗BRR) (74)
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= 2(A⊤A + D2)x⃗BRR − 2A⊤y⃗ (75)

=⇒ (A⊤A + D2)x⃗BRR = A⊤y⃗ (76)

=⇒ x⃗BRR = (A⊤A + D2)−1A⊤y⃗. (77)
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13. Low-Rank Matrix Completion (28 pts)

Consider a matrix A ∈ Rm×n. If some entries are corrupted, one principled way to identify A is to find the
matrix B ∈ Rm×n of minimal rank that agrees with A on all known entries. This can be formulated as an
optimization problem whose objective function is rank(B). Because the rank(·) function is not continuous,
we use the intuition that a low-rank matrix will only have a few nonzero singular values, and instead use the
sum-of-singular-values function as the objective:

f(B) .=
rank(B)∑

i=1
σi{B} (78)

where σi{B} is the ith largest singular value of B. In this problem we will explore some properties of f .

(a) (8 pts) Prove that
f(B) ≤ max

C∈Rm×n

∥C∥2≤1

tr
(
C⊤B

)
. (79)

Here tr(·) is the trace, which for a matrix X ∈ Rm×n with entries Xij is tr(X) =
∑min{m,n}

i=1 Xii.

HINT: Expand B into its SVD. Try to find a D ∈ Rm×n such that ∥D∥2 = 1 and tr
(
D⊤B

)
= f(B).

HINT: You may use the cyclic property of traces without proof. If XY Z and ZXY are valid matrix
products then tr(XY Z) = tr(ZXY ).
Solution: Let r

.= rank(B). Let B = UrΣrV ⊤
r be the compact SVD of B. Let D = UrV ⊤

r . Then
∥D∥2 = 1, so

max
C∈Rm×n

∥C∥2≤1

tr
(
C⊤B

)
≥ tr

(
D⊤B

)
(80)

= tr
(
VrU⊤

r UrΣrV ⊤
r

)
(81)

= tr
(
VrΣrV ⊤

r

)
(82)

= tr
(
V ⊤

r VrΣr

)
(83)

= tr(Σr) (84)

=
r∑

i=1
σi{B} (85)

= f(B). (86)

(b) (9 pts) Prove that
f(B) ≥ max

C∈Rm×n

∥C∥2≤1

tr
(
C⊤B

)
. (87)

Here tr(·) is the trace, which for a matrix X ∈ Rm×n with entries Xij is tr(X) =
∑min{m,n}

i=1 Xii.

HINT: Let r
.= rank(B) and expand B into its outer product SVD, i.e., B =

∑r
i=1 σi{B}u⃗iv⃗

⊤
i .

HINT: You may use the cyclic and linearity properties of traces without proof. If XY Z and ZXY are valid
matrix products then tr(XY Z) = tr(ZXY ). Also, tr(αX + βY ) = α tr(X) + β tr(Y ) for α, β ∈ R.
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Solution: Let r = rank(B). Let B =
∑r

i=1 σi{B}u⃗iv⃗
⊤
i be an outer product SVD of B. For any

C ∈ Rm×n such that ∥C∥2 ≤ 1, we have

tr
(
C⊤B

)
= tr

(
C⊤

(
r∑

i=1
σi{B}u⃗iv⃗

⊤
i

))
(88)

= tr
(

r∑
i=1

σi{B}C⊤u⃗iv⃗
⊤
i

)
(89)

=
r∑

i=1
σi{B} tr

(
C⊤u⃗iv⃗

⊤
i

)
(90)

=
r∑

i=1
σi{B} tr

(
v⃗⊤

i C⊤u⃗i

)
(91)

=
r∑

i=1
σi{B}(v⃗⊤

i C⊤u⃗i) (92)

≤
r∑

i=1
σi{B} ∥Cv⃗i∥2 ∥u⃗i∥2 (93)

≤
r∑

i=1
σi{B} ∥C∥2︸ ︷︷ ︸

≤1

∥v⃗i∥2︸ ︷︷ ︸
=1

∥u⃗i∥2︸ ︷︷ ︸
=1

(94)

≤
r∑

i=1
σi{B} (95)

= f(B). (96)

This holds for all C such that ∥C∥2 ≤ 1, so taking the max over C gets

f(B) ≥ max
C∈Rm×n

∥C∥2≤1

tr
(
C⊤B

)
(97)

as desired.

From parts (a) and (b) together, we can conclude that

f(B) = max
C∈Rm×n

∥C∥2≤1

tr
(
C⊤B

)
. (98)

Here tr(·) is the trace, which for a matrix X ∈ Rm×n with entries Xij is tr(X) =
∑min{m,n}

i=1 Xii.

(c) (6 pts) Show that for all B1, B2 ∈ Rm×n we have

f(B1 + B2) ≤ f(B1) + f(B2) (99)

i.e., the function f satisfies the triangle inequality.
HINT: Use the characterization of f given by (98). Also, you may use the linearity property of traces
without proof, i.e., tr(αX + βY ) = α tr(X) + β tr(Y ) for α, β ∈ R.

Solution: We have

f(B1 + B2) = max
C∈Rm×n

∥C∥2≤1

tr
(
C⊤(B1 + B2)

)
(100)
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= max
C∈Rm×n

∥C∥2≤1

tr
(
C⊤B1 + C⊤B2

)
(101)

= max
C∈Rm×n

∥C∥2≤1

{
tr
(
C⊤B1

)
+ tr

(
C⊤B2

)}
(102)

≤ max
C∈Rm×n

∥C∥2≤1

tr
(
C⊤B1

)
+ max

C∈Rm×n

∥C∥2≤1

tr
(
C⊤B2

)
(103)

= f(B1) + f(B2). (104)

Indeed, f is a norm; note that f is called the nuclear norm, and it is quite relevant in signal processing.
The reason that the nuclear norm is a good approximation to the rank function is because the nuclear norm
is the so-called convex envelope of the rank function – the largest convex function which is a lower bound
to the rank function. Intuitively a low-rank matrix should have only a few nonzero singular values, and the
nuclear norm promotes this behavior. This has the same geometric picture as LASSO – using the ℓ1 norm
objective function to enforce that the solution has only a few nonzero entries – which we will explore later
in the class.

(d) (5 pts) Is f a convex function? If yes, prove it. If no, justify your answer using an example.
HINT: You can use without proof the fact that f(αB) = |α| f(B) for all α ∈ R and B ∈ Rm×n.

Solution: Yes, f is convex; the triangle inequality and the hint give

f(θB1 + (1 − θ)B2) ≤ f(θB1) + f((1 − θ)B2) = θf(B1) + (1 − θ)f(B2) (105)

for B1, B2 ∈ Ω and θ ∈ [0, 1].
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