
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2024
Speeding up Gradient Descent

1 Introduction and Background

Gradient descent has been the optimization algorithm of choice in a large amount of optimization applications, espe-
cially those which operate at large scales (where Hessians are too difficult to repeatedly compute). Yet gradient descent
is not the fastest converging algorithm, even compared to other algorithms which have just zeroth and first-order infor-
mation (i.e., knowledge of the function and its gradient). Indeed, Nesterov showed that it is possible to design a sped-up
version of gradient descent, called accelerated gradient descent, which has asymptotically faster convergence rate than
gradient descent [1].¹ This accelerated method is, at least at first, seemingly complicated and unmotivated; the original
proof of convergence rate given by Nesterov amounted to a set of mysterious algebraic manipulations. Even one of
the most well-known optimization theorists, Sebastian Bubeck, posted on his blog about how understanding Nesterov’s
acceleration is difficult to understand.

Recently, there have been several lines of research attempting to understand and extend Nesterov’s acceleration.
One of these attempts uses a generalization of gradient descent called mirror descent combined with gradient descent
to improve the convergence rate of the algorithm [3], giving an interpretable modification of gradient descent which
achieves optimal convergence rates. In this project, we introduce mirror descent and apply it to accelerate gradient
descent.

¹In fact, it achieves asymptotically optimal convergence rates; a proof of this is contained in [2].
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2 Overview of Relevant Literature

In the first section of this project, you will read several research papers which are relevant to the topic of this project,
and summarize and synthesize them into a related work section. The aim is to gain a better understanding of the topics
discussed in this project and to get insights into the state-of-the-art development in our understanding of accelerating
gradient descent.

In the related works section, you will summarize the main results and findings for at least three papers. It is espe-
cially useful and interesting to write about any common threads you find across multiple papers. We will assign two
below, along with some questions you may think about while reading. The remaining paper(s) you choose to read can
be found via Google or other sources.²

The papers we assign are the following:

1. ”AMethod of Solving a Convex Programming Problemwith Convergence RateO(1/k2)” byNesterov [1]. While
writing your summary, please mention the following points.

(a) Describe themain assumptionsmade in the paper on the function f to optimize. What kinds of functions are
shown to be optimized via accelerated gradient descent? (HINT: In this paper, Nesterov uses the notation
f ′ to denote the gradient ∇f .)

(b) What is the update rule at the kth step?

(c) After T iterations, what is an upper-bound on f(~xT )−min~x∈Rn f(~x)?

2. ”Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent” by Allen-Zhu and Orecchia [3].
While writing your summary, please mention the following points.

(a) What do the authors claim is the kind of progress made by gradient descent? What about mirror descent?

(b) Describe the main assumptions made in the paper on the function f to optimize. What kinds of functions
are shown to be optimized via the algorithm AGM proposed by Allen-Zhu and Orecchia?

(c) After T iterations of AGM, what is an upper-bound on f(~yT )−min~x∈Q f(~x)?

(d) What is the relationship betweenAllen-Zhu andOrecchia’s linear coupling paper [3] andNesterov’s original
accelerated gradient descent paper [1]?

3. The third (and beyond) papers you choose to read yourself must relate to the topic of accelerated optimization
algorithms, but the exact paper(s) are your choice. For any additional paper(s), please add a summary of the
findings of the paper, and describe how the paper relates to [1] and [3]. What is the novel contribution of the
new paper you have read? Why is it important/relevant to the field? What is an open question that remains after
reading the paper?

²Given a research paper written recently, one way to see papers related to it is to go to Google Scholar and type in the paper title, then look at all
papers which cite the paper you started with (via “Cited by $NUM”); these tend to continue the same research threads or demonstrate applications.
Another way is to look up the papers cited by the papers you have already read, focusing on those which have relevant titles. Each paper collects a
list of sources cited near the end of the paper.
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3 Problems

1. Mirror Descent

In this problem, we will go through a proof of mirror descent in the case of entropy and `2 regularization.

Consider the problem
f? = min

~x∈X
f(~x). (1)

where X ⊆ Rn is a convex subset of Rn. Often, running (projected) gradient descent is not the right thing to do
and can lead to slow convergence. This is usually because the convergence rates of Euclidean gradient descent
are of the form f(~xk) − f? ≤ O(L‖~x0 − ~x?‖2

2/k) and it may be the case for X that the `2 distance of the
initial point from the optimal and/or the smoothness parameter L that’s measured according to the `2 may be
quite large. But taking the “right geometry” into account when defining the update step may lead to much faster
convergence. For the sake of simplicity, however, for all except one subpart, we will only work for the `2 case in
this problem.

For any convex (doubly)-differentiable function h : X → R, define the Bregman divergence of h as

Dh(~y; ~x) = h(~y)− h(~x)− 〈∇h(~x), ~y − ~x〉 (2)

where 〈~u,~v〉 is the dot product between two vectors ~u and ~v.

Algorithm 1 Mirror Descent Algorithm
~x0 is a uniformly random point in X
k = 0
while k ≤ T do

ηk > 0 a step size.
~gk ← ∇f(~xk)
~xk+1 = Mirr(ηk~gk; ~xk) where Mirr(~g; ~x) = argmin

~z∈X
{〈~g, ~z〉+ Dh(~z; ~x)} is the Mirror Descent step.

k ← k + 1
end while
return xT = 1

T

T∑
k=0

~xk

(a) Prove that for any convex set X and α-strongly convex function h : X → R, for any fixed ~x ∈ X , the
Bregman divergence Dh(~y; ~x) is a α-strongly convex function of ~y. Note that by taking α = 0, this proves
that if h is convex, the Bregman divergence is convex as well.

(b) Something that’s going to be useful in a convergence proof of mirror descent is going to be the so-called
Bregman three-point inequality. Formally, prove that

〈∇h(~x)−∇h(~y), ~y − ~u〉 = Dh(~u; ~x)−Dh(~u; ~y)−Dh(~y; ~x) (3)

(c) Let’s try to understand the mirror descent update in some special cases. For this part, assume X = {~x ∈
Rn|xi ≥ 0 ∀i ∈ [n] and

n∑
i=1

xi = 1} is the n-dimensional probability simplex. We will take h(~x) =
n∑

i=1
(xi log(xi)− xi), the entropy function. Given ~x ∈ X and given some ~g ∈ Rn and η > 0, compute
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Mirr(η~g; ~x). Since X is constrained to be the simplex, you will have to use a Lagrange multiplier for the
n∑

i=1
xi = 1 constraint and eliminate the Lagrange multiplier from the final solution. In this setting, this

algorithm goes by a more popular name which is “multiplicative weights update method”.

(d) Now, for the rest of the problem, for simplicity, we will assume X = Rn and h(~x) = 1
2‖~x‖

2
2. In this case,

given a ~g ∈ Rn, η > 0 and ~x ∈ X , compute Mirr(η~g; ~x). Also compute Dh(~y, ~x) in this case. Do these
look familiar to something you have already seen?

(e) To prove convergence of mirror descent, it’s convenient to introduce a term from online learning, called
regret. For any feasible solution ~u ∈ X , we define regret in the kth iteration as Regk(~u) = 〈ηk~gk, ~xk− ~u〉.
We will first prove an upper bound on the regret of the kth iteration. Formally, prove that

Regk(~u) = 〈ηk~gk, ~xk − ~u〉 = 〈ηk~gk, ~xk − ~xk+1〉+ Dh(~u; ~xk)−Dh(~u; ~xk+1)−Dh(~xk+1; ~xk) (4)

= η2
k‖~gk‖2

2
2 + Dh(~u; ~xk)−Dh(~u; ~xk+1) (5)

This inequality will show up again in the proof of accelerated gradient descent in another question in the
project.

HINT: Think of the first term on the equality that has to be proven. Looking at that, maybe adding and
subtracting from the regret may help?

(f) Now we will consider the total regret over T iterations, i.e., TotalRegT (~u) =
T∑

i=0
〈ηk~gk, ~xk−~u〉. Prove that

TotalRegT (~u) ≤
T∑

k=0
η2

k‖~gk‖2
2 + Dh(~u; ~x0) (6)

(g) Now, we will prove a lower bound on the regret in terms of the function value at xT and at ~u. Taking ηk = η

for all k, prove that

TotalRegT (~u) ≥ Tη(f(xT )− f(~u)) (7)

Using this, conclude that

f(xT ) ≤ f(~x?) + 1
T

[
η

T∑
i=0
‖~gk‖2

2 + Dh(~x?; ~x0)/η

]
(8)

(h) Now, assume that the function is L-Lipschitz (note that this is asking for the function to be Lipschitz and
not the gradient of the function to be L-Lipschitz). It can be easily proven (and you may assume so without
proof) that ‖∇f(~x)‖2 ≤ L for all ~x ∈ X . Conclude that

f(xT ) ≤ f(~x?) + ηL2 + 1
2ηT
‖~x0 − ~x?‖2

2 (9)

Show that there exists an η > 0 such that

f(xT ) ≤ f(~x?) +
√

2L‖~x0 − ~x?‖2√
T

(10)

HINT: Can you try to optimize the total regret upper bound by optimizing it as a function of η? Hence the
convergence is at a rate of 1/

√
T .
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(i) In the accompanying Jupyter notebook, you will implement the mirror descent update for the entropy reg-
ularizer and for the `2 regularizer. The input to the function will be step size ηk, a vector ~g which is meant
to represent the gradient, and the current point ~xk.

Hence the convergence is at a rate of 1/
√

T . While we did the proof for the unconstrained setting and with
the `2 geometry, this proof with very few changes can be used to prove similar results in constrained settings
and with other geometries, which show up, for example, in the probability simplex case corresponding to the
multiplicative weights update method, whose mirror update you calculated above.
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2. Accelerated Gradient Descent

In this problem, we will go through a proof of accelerated gradient descent by combining a gradient descent and
a mirror descent step. You will also implement this algorithm in an accompanying Jupyter notebook and use it
to optimize some specific functions.

Recall that in lecture, in the proof of gradient descent for L-smooth functions, we proved the following inequality:

f(~x+) ≤ f(~x)− 1
2L
‖∇f(~x)‖2

2 (11)

where ~x+ = ~x− 1
L∇f(~x) is the gradient descent step. We will need this inequality as well as the inequality you

proved in part (e) in the Mirror Descent problem which bounds the per iteration regret.

Let’s now describe an accelerated gradient descent algorithm. We will work in the unconstrained optimization
setting so that X = Rn and will use the `2 geometry and we assume f is convex and L-smooth.

Algorithm 2 Acceleration via Combining Gradient and Mirror Descent
~x0 = ~y0 = ~z0 is a uniformly random point in X
k = 0
while k ≤ T do

~xk+1 = τk~zk + (1− τk)~yk for τk = 2/(k + 2)
~yk+1 ← xk+1 − 1

L∇f(~xk+1)
~zk+1 = Mirr(ηk+1∇f(~xk+1); ~zk) where ηk+1 = (k + 2)/2L = 1/(τkL)
k ← k + 1

end while
return yT

Here the h function defining the Bregman divergence for the mirror descent step is just h(~x) = 1
2‖x‖

2
2.

(a) We first understand the regret on the mirror update. Formally prove that,

〈ηk+1∇f(~xk+1), ~zk − ~u〉 =
η2

k+1
2 ‖∇f(~xk+1)‖2

2 + D(~u; ~zk)−D(~u; ~zk+1) (12)

HINT: In part (e) of the mirror descent question, would the proof still work if ~gk was something other than
∇f(~zk)?

(b) Now, we try to understand the regret of ~xk+1. Formally, prove that,

〈ηk+1∇f(~xk+1), ~xk+1 − ~u〉 (13)

= (1− τk)ηk+1

τk
〈∇f(~xk+1), ~yk − ~xk+1〉+

η2
k+1
2 ‖∇f(~xk+1)‖2

2 + D(~u; ~zk)−D(~u; ~zk+1). (14)

Furthermore, show that one can upper bound the RHS above by

(1− τk)ηk+1

τk
(f(~yk)− f(~xk+1)) + η2

k+1L(f(~xk+1)− f(~yk+1)) + D(~u; ~zk)−D(~u; ~zk+1). (15)

HINT: In the ~xk+1 − ~u term, add and subtract ~zk and use the previous part along with the definition of
~xk+1.
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(c) Now deduce that

η2
k+1Lf(~yk+1)− (η2

k+1L− ηk+1)f(~yk)−D(~u; ~zk) + D(~u; ~zk+1) ≤ ηk+1f(~u) (16)

HINT: You will need to use the specific values of ηk and τk as defined in the algorithm definition to observe
some cancellations

(d) Now, summing up the inequality in the previous part and plugging in values for ηk+1, conclude that

f(~yT ) ≤ f(~x?) + 2L‖~x? − ~x0‖2
2

(T + 1)2 (17)

(e) In the accompanying Jupyter notebook, implement the above acceleration via gradient plus mirror descent
step. Run the algorithm on a given low rank quadratic optimization problem. Report how the algorithm
performs as compared to Gradient Descent, Adam, Adagrad algorithms. In the logistic regression fval
function, inside the logarithm terms, you should add a small epsilon like 1e-10 in order to ensure there are
no NaNs in the output.
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4 Extension

Now that you’ve seen some of the research landscape and worked through some of the resulting problems, the last part
of the project is to complete an extension of the project material. An extension is a self-directed addition to the research
elucidated in the related work and the problem set. You should include the extension material in your writeup after the
problem set.

When selecting a topic for the extension, the following questions may be reasonable to ask:

• Was there a question that arose when reading related work or doing the project that seems like it might be
interesting to investigate?

• Do the methods in the papers read for related work or the project itself extend to a particular interesting setting?

• Does a different method solve the same problems considered here? How can the methods be compared (on axes
like efficiency, simplicity, etc)?

The extension would ideally answer at least one of these questions constructively, or some other question along the
same lines. For example, in the first case, you would write down the question and try to answer it (via theory and/or
experiments). In the second case, you would investigate the method in the paper applied to the setting of your interest.
In the third case, you would apply the different method to the same paper, or compare it with some baseline methods.

Often, an extension idea will come from reading related work. Some broad ideas for possible extensions which
heavily draw upon related work are:

• Try to replicate a piece of related work that’s been done and that you have read about. Contrast this with the work
done in the project.

• As we have done in this project, present in detail a simple (or complex if you want) case from a related paper
that you read.

This is definitely not an extensive list. The overall guideline is that we must be able to understand what you have done
from your work. It can help if you can crisply formulate a question that you are trying to answer. If you cannot, then it
might not be a good extension.

Please note that to successfully complete the extension, you do not need to have a breakthrough! It is very difficult
to come up with and answer a significant research question in a few weeks, so you should not feel discouraged if this is
not possible for you. If you are ever feeling stuck, we encourage you to come to office hours to discuss your extension
with us!
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5 Deliverables

Your submission should contain:

1. A PDF of your final report. Your final report should be written in LATEX. You are recommended to use the
template that has been provided on the course website. You may choose not to typeset your equations, but in that
case the document should include very high quality, cleanly handwritten scans of your work; we will not try to
read illegible content. In particular, we prefer that you typeset your work, since it is an important skill to learn,
and a nicely typeset project report (put on your website or CV) can be a strong showcase of the work you have
done.

Your report should include

(a) An abstract, i.e., a paragraph length summary of what is in your document.

(b) An introduction, which describes what the research problem studied in the project is and why it is important.

(c) A literature review, whose guidelines were elaborated in Section 2.

(d) Solutions to all guided portions of the project in Section 3, including relevant plots, figures, or code snippets
that are needed to answer questions.

(e) A detailed description of the work you did for your extension in Section 4.

(f) A contributions section, i.e., a description of which members of your group did what work for the project.

2. Uploaded code, including Jupyter notebooks, for your work in the guided portion of the project (Section 3).

3. Uploaded code, including Jupyter notebooks, for your work in the project extension (Section 4).

All of these deliverables (project report PDF, code for the guided part of the project, and code for the extension) will
have separate Gradescope assignments.
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6 Rubric

To get any grade, you must submit a project report with:

• An abstract summarizing the report;

• An introduction section;

• A literature review section, which contains a literature review as detailed in Section 2;

• A results section, which contains the solutions for the guided portion of the project as detailed in Section 3;

• An extension section, which contains a summary of your extension as detailed in Section 4;

• A contribution section;

as well as upload your code (including Jupyter notebooks) for your work in the guided portion of the project as well as
the extension (if applicable). Once these requirements are met, your grade is based on the quality of the report.

• To get a C, your project report must fulfill the following requirements:

– Your introduction must describe the research problem clearly and in detail;

– Your literature review must summarize both provided papers and at least one more, and contain mostly-
correct answers to the provided questions in Section 2;

– Your results for the guided portion of the project (Section 3) must contain:

∗ A mostly correct implementation for either problem 1(i) or problem 2(e) (or both), up to minor bugs;
∗ Correct solutions for any four problems from 1(a) — 1(h) and any two problems from 2(a) — 2(d).

– Your extension section may be blank (i.e., you do not need an extension to get a C).

• To get a B, your project report must fulfill the following requirements:

– Your introduction must describe the research problem clearly and in detail;

– Your literature review must summarize both provided papers and at least one more, and contain mostly-
correct answers to the provided questions in Section 2;

– Your results for the guided portion of the project (Section 3) must contain:

∗ A mostly correct implementation for problems 1(i) and 2(e), up to minor bugs;
∗ Correct solutions for any six problems from 1(a) — 1(h) and any three problems from 2(a) — 2(d).

– Your extension section may be blank (i.e., you do not need an extension to get a B).

• To get a A, your project report must fulfill the following requirements:

– Your introduction must describe the research problem clearly and in detail;

– Your literature reviewmust summarize both provided papers plus at least one more related work and contain
completely correct answers to the provided questions in Section 2;

– Your results for the guided portion of the project (Section 3) must contain completely correct mathematical
solutions and/or code implementations for all parts;

– Your extensionmust contain significant, detailed, and organized work towards summarizing or synthesizing
existing research, as per the guidelines in Section 4. In particular, it should start with a clear research
question and document one or more attempts to answer this question. Note that the question does not need
to be conclusively answered — this rubric item just asks for a thoughtful attempt to be made.
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