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Control with Multiplicative Noise

1 Introduction and Background

Traditional models in control typically assume that any environmental noise or disturbance is independent of the state
or observation of the system itself. While this assumption greatly simplifies the models and their control, it is not
always an accurate representation of physical phenomena. Systems with state-dependent or observation-dependent
noise require different classes of models to capture this nature of the disturbance. Multiplicative-noise models are a
favorable modeling choice for such systems. However, under the standard linear control perspective, some of these
systems with state-dependent observation noise would be considered uncontrollable. In this project, you will follow
some recent and classical research papers to understand the state of the art in our understanding of the control of systems
with multiplicative noise. Along the way, you will solve multiple optimization problems, and learn a new technique
that is commonly used to find optimal policies for sequential optimization problems called policy gradient.

1.1 Introduction to Control

In this project, we will use different techniques to analyze control systems, which are discrete-time dynamical systems
that have external inputs. For concreteness and simplicity, we work in the case where everything is a scalar, though the
ideas generalize to vector systems.

First, we begin by looking at discrete-time dynamical systems. Let Xt ∈ R be the state at time t. The state starts
at X0 ∈ R at time t = 0. At each timestep t ≥ 0:

1. The system (also called the environment) hands us an observation Yt ∈ R.

2. The system uses the state Xt to choose a new state Xt+1 ∈ R.

There may be noise in the state and observation; thus, all the X’s (including X0) and Y ’s are real-valued random
variables.

Now we look at what changes when we are able to supply external input. More precisely, we supply a so-called con-
trol policy F = (F0, F1, F2, . . . ), where for each t ≥ 0 we have that Ft : Rt+1 → R is a real-valued and deterministic
function. The system state initializes at X0 ∈ R as before, and at each timestep t ≥ 0:

1. The system hands us an observation Yt ∈ R.

2. Using the history of observations Y(t)
.= (Y0, Y1, . . . , Yt) ∈ Rt+1, we choose control Ut = Ft(Y(t)) ∈ R.

3. The system uses the state Xt and the input Ut to choose a new state Xt+1 ∈ R.

As before, all the X’s and Y ’s are random variables; now the U ’s are also random variables.
For the purpose of the project, our goal as users is to provide a control policy F which stabilizes the system. One

way of defining stabilization is the so-called property of stability in the second moment.

Definition 1 (Stability of Second Moment)
For a given control policy F , the control system SF is stable in the second moment if and only if there exists
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M ∈ R≥0 such that
E
[
X2

t

]
≤M, ∀t ≥ 0. (1)

Let λ ≥ 0 be a regularization parameter. In order to find an optimal control policy, i.e., one which stabilizes the system
as efficiently as possible, we seek to minimize the loss

L(F ) .= E

[ ∞∑
t=0
{X2

t+1 + λU2
t }

]
, (2)

over control policies F .
Tackling the problem of designing optimal control policies is extremely hard in full generality. Indeed, as stated,

the above optimal control optimization problem is infinite dimensional! This is because the optimization variables are
actually functions Ft : Rt+1 → R for each time-step t ≥ 0.

In this project, we discuss a particularly challenging control system and explore simplifications we can make to
make the optimal control problem tractable and solvable – first by hand, then by the policy gradient algorithm.

1.2 Multiplicative Noise Control

In this project we analyze the following control system. Let a, b, c, µ ∈ R and α, β, γ, σ ≥ 0 be constants.

Definition 2 (Multiplicative Noise Control System)
The multiplicative noise control system is given as

Xt+1 = AtXt + BtUt

Yt = CtXt,
∀t ≥ 0, (3)

where for each t ≥ 0:

• Xt is the state at time t, Yt is the observation at time t, and Ut = Ft(Y(t)) is the control at time t.

• Xt, Yt, At, Bt, Ct are real-valued random variables, where:

– All A’s, B’s, C’s, and X0 are independent from each other.

– We have
E[At] = a, Var(At) = α2, ∀t ≥ 0
E[Bt] = b, Var(Bt) = β2, ∀t ≥ 0
E[Ct] = c, Var(Ct) = γ2, ∀t ≥ 0
E[X0] = µ, Var(X0) = σ2.

(4)

From this one can show that

E
[
A2

t

]
= a2 + α2, E

[
B2

t

]
= b2 + β2, E

[
C2

t

]
= c2 + γ2, ∀t ≥ 0 (5)

and E
[
X2

0
]

= µ2 + σ2. (6)

– Each Bt is not deterministically zero (that is b and β are not both zero). This means that our control
Ut has an impact on the state update and thus the overall system.
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– Similarly, each Ct is not deterministically zero (that is c and γ are not both zero). This means that our
observations Yt are not just 0, and in fact have some information about the state.

1.3 Project Statement

In this project we will consider three variants of the multiplicative control model introduced in Definition 2:

• The control noise model in which we only consider randomness in the control due to randomness of Bt.

• The state and control noise model in which we additionally consider randomness in the state due to the random-
ness of At.

• The observation noise model in which we only consider randomness in the output due to the randomness of Ct.

For each of thesemodels we aim to answer twomain questions. The first is a question of existence of an optimal feedback
control policy that stabilizes the system. That is for which combination of parameters is the system stabilizable in the
second moment. The second question is about finding the optimal policy if it exists. We will start by answering these
questions in the setting where the system parameters are known. Then, we consider answering these questions in the
more realistic setting of unknown system parameters for which we will introduce the policy gradient algorithm as a
useful tool.

You will answer these questions through a guided review of some recent and classical results published in the
literature. Along theway, youwill analytically solvemultiple optimization problems, and perform empirical evaluations
of some policies. We recommend that all problems are done in order.
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2 Overview of Relevant Literature

In the first section of this project, you will read several research papers which are relevant to the topic of this project,
and summarize and synthesize them into a related work section. The aim is to gain a better understanding of the topics
discussed in this project and to get insights into the state-of-the-art development in our understanding of accelerating
gradient descent.

In the related works section, you will summarize the main results and findings for at least three papers. It is espe-
cially useful and interesting to write about any common threads you find across multiple papers. We will assign two
below, along with some questions you may think about while reading. The remaining paper(s) you choose to read can
be found via Google or other sources.¹

The papers we assign are the following:

1. ”The Uncertainty Threshold Principle: Some Fundamental Limitations of Optimal Decision Making under Dy-
namic Uncertainty” by Athans et al. [1]. In your summary include answers to the following questions.

(a) Describe the multiplicative noise model studied in the paper. What are the assumptions made about the
noise?

(b) What is the cost function considered for the optimal control problem?

(c) What is the form of the optimal feedback control policy for the studied model?

(d) Under what condition does such optimal feedback control policy exist?

2. ”When Multiplicative Noise Stymies Control” by Ding et al. [2]. While writing your summary, please mention
the following points.

(a) What is the main question the paper is answering?

(b) Describe the multiplicative noise model studied in the paper. What are the assumptions made about the
noise?

(c) Under what conditions is the system stabilizable by a linear policy?

(d) What results do the paper state about non-linear policies?

(e) How does this work relate to the earlier work of Athans et al. [1]?

3. The third (and beyond) papers you choose to read yourself must relate to the topic of control of multiplicative
noise systems, but the exact paper(s) are your choice. For any additional paper(s), please add a summary of the
findings of the paper, and describe how the paper relates to [1] and [2]. What is the novel contribution of the
new paper you have read? Why is it important/relevant to the field? What is an open question that remains after
reading the paper?

¹Given a research paper written recently, one way to see papers related to it is to go to Google Scholar and type in the paper title, then look at all
papers which cite the paper you started with (via “Cited by $NUM”); these tend to continue the same research threads or demonstrate applications.
Another way is to look up the papers cited by the papers you have already read, focusing on those which have relevant titles. Each paper collects a
list of sources cited near the end of the paper.
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3 Problems

1. Environment Implementation

Before attempting this problem, please read the introduction to the codebase in Section 4.1.

In later parts, we will empirically test our policies on various systems. To do this, we will be using the environ-
ment classes in the file environments/multiplicative_gaussian_noise_environment.py. Using the
system defined in Definition 2, implement the MultiplicativeGaussianNoiseEnvironment class in the file
environments/multiplicative_gaussian_noise_environment.py.
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2. Control Noise: Derivations

In this problem we consider a simplified version of the multiplicative noise system where the noise is only on the
input. More formally, we consider a system that satisfies the following assumptions:

Definition 3 (Control Noise System)
The control noise system is a variant of the general multiplicative noise system such that

• At = a deterministically (that is a can take any arbitrary value and α = 0)

• Bt is a random variable with E[Bt] = b and Var(Bt) = β2 where b and β can take any arbitrary
values

• Ct = 1 deterministically (that is c = 1 and γ = 0)

• X0 = 1 deterministically (that is µ = 1 and σ = 0)

These assumptions combined result in the following system

Xt+1 = aXt + BtUt

Yt = Xt,
∀t ≥ 0. (7)

We also assume that our regularization parameter λ = 0, so the loss we attempt to minimize is L(F ) =
E
[∑∞

t=0 X2
t+1
]
. This system was studied several times, including by Gravell et al. [3] and Ranade et al. [4].

Concretely, our goal in this problem is to find all values of a for which the system is stabilizable in the second
moment. When a is such that the system is stabilizable in the second moment, we also want to find an optimal
policy F ?.

Onemay show using the technique of stochastic dynamic programming² that the optimal so-called greedy memory-1
policy is optimal overall. In other words, suppose that our policy F says that at every step, we should use only the
most recent observation Yt in order to choose the Ut which minimizes the immediate cost, i.e., the state second
moment E

[
X2

t+1
∣∣ Yt

]
. Then this policy is optimal, in the sense that it minimizes the loss L(F ) and stabilizes

the widest range of a.

Fortunately, determining such a control policy turns out to be tractable; we will do so now.

(a) First, let us determine what the state second moment E
[
X2

t+1
∣∣ Yt

]
is. Fix t ≥ 0. Show that

E
[
X2

t+1
∣∣ Yt

]
= a2Y 2

t + 2abUtYt + (b2 + β2)U2
t . (8)

(b) Now, we will determine what exactly the optimal greedy memory-1 policy F ? is. Fix t ≥ 0. Define
F ?

t : Rt+1 → R by
F ?

t (Y(t))
.= argmin

Ut∈R
E
[
X2

t+1
∣∣ Yt

]
. (9)

Show that
F ?

t (Y(t))
.= − ab

b2 + β2 Yt, ∀Yt ∈ R (10)

so that F ?
t is a linear function of only Yt, and the strategy is the same regardless of the value of t. This

optimal policy F ? is therefore called a linear period-1 (or linear time-invariant) policy.

²A reference can be found in Bertsekas’ book Dynamic Programming and Optimal Control [5].
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(c) With the optimal control Ut = F ?
t (Y(t)), where F ?

t was given in part (b), show that

E
[
X2

t

]
=
(

a2β2

b2 + β2

)t

, ∀t ≥ 0. (11)

HINT: Refer to Section 4.2 for useful probability identities.

(d) With the optimal control Ut = F ?
t (Y(t)), where F ?

t was given in part (b), and using the result from part
(c), show that the system is stable in the second moment if and only if

|a| ≤

√
1 + b2

β2 . (12)

(e) Now consider a system similar to the one described in Definition 3 but with Bt being a deterministic and
time varying parameter. Assume that Bt is known at every timestep t ≥ 0. Derive the greedy optimal
control policy that stabilizes this system. Is it a time-invariant policy?

(f) In main.ipynb, complete the Control Noise section (refer to Section 4.1 for information about the code-
base).
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3. State and Control Noise: Derivations

In this problem, we consider a more general version of the system considered in the previous problem, where the
noise is on the state as well as on the control. More formally, we consider a system that satisfies the following
assumptions:

Definition 4 (State and Control Noise System)
The control noise system is a variant of the general multiplicative noise system such that

• At is a random variable with E[At] = a and Var(At) = α2 where a and α can take any arbitrary
values

• Bt is a random variable with E[Bt] = b and Var(Bt) = β2 where b and β can take any arbitrary
values

• Ct = 1 deterministically (that is c = 1 and γ = 0)

• X0 is a random variable with E[X0] = µ and Var(X0) = σ2 where µ and σ can take any arbitrary
values

These assumptions combined result in the following system

Xt+1 = AtXt + BtUt

Yt = Xt,
∀t ≥ 0. (13)

We attempt to minimize the loss L(F ) = E
[∑∞

t=0{X2
t+1 + λU2

t }
]
. Similarly to the previous problem, one can

show using dynamic programming that there is a memory-1 greedy optimal control policy. Namely, the policy
F which says that at every step we should use only Yt in order to choose Ut which minimizes the immediate cost
E
[
X2

t+1
∣∣ Yt

]
+ λU2

t is overall optimal.

(a) Using the same approach as Problem 2., show that an optimal control policy is

F ?
t (Y(t)) = − ab

b2 + β2 + λ
Yt, ∀t ≥ 0, (14)

and that the system is stabilizable in the second moment if and only if

α2 + a2(b2β2 + (β2 + λ)2)
(b2 + β2 + λ)2 ≤ 1. (15)

(b) In main.ipynb, complete the State-Control Noise section (refer to Section 4.1 for information about the
codebase).
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4. Observation Noise: Derivations

Now, we will consider the complementary problem to the state and control noise system. That is, we will consider
a system where the noise is only on the observation. Formally, we consider a system that satisfies the following
assumptions:

Definition 5 (Observation Noise System)
The observation noise system is a variant of the general multiplicative noise system such that

• At = a deterministically (that is a can take any arbitrary value and α = 0)

• Bt = 1 deterministically (that is b = 1 and β = 0)

• Ct is a random variable with E[Ct] = c and Var(Ct) = γ2 where c and γ can take any arbitrary
values

• X0 = 1 deterministically (that is µ = 1 and σ = 0)

These assumptions combined result in the following system

Xt+1 = aXt + Ut

Yt = CtXt,
∀t ≥ 0. (16)

We also assume that our regularization parameter λ = 0, so the loss we attempt to minimize is L(F ) =
E
[∑∞

t=0 X2
t+1
]
.

This system was studied several times, including by Gravell et al. [3] and Subramanian et al. [6]. In fact,
designing the optimal control for this system is still an open problem!

Similarly to previous problems, in this problemwewill derive the best linearmemory-1 period-1 greedy policy for
the observation noise system. We will also compare the performance of this policy on stabilizing the observation
noise system to its performance in stabilizing the control noise system. Finally, wewill comment on the optimality
of the linear memory-1 period-1 greedy policy on this system.

(a) Show by induction on t that, if U is a linear memory-1 period-1 greedy control policy, i.e., if for all t we
have Ut = Ft(Yt) = θYt, then

E
[
X2

t

]
= (a2 + 2acθ + (c2 + γ2)θ2)t, ∀t ≥ 0. (17)

HINT: Write X2
t+1 in terms of θ, Xt, and Ct

(b) Suppose that Ut = Ft(Y(t)) = θYt for all t ≥ 0, and fix a particular t. Define

θ? .= argmin
θ∈R

Ut=θYt

E
[
X2

t+1
]

. (18)

Show that
θ? = − ac

c2 + γ2 . (19)

This result shows that the optimal linear memory-1 period-1 greedy control policy is

F ?
t (Y(t)) = − ac

c2 + γ2 Yt. (20)

Contrast this to the optimal control policy F ?
t (Y(t)) = − ab

b2 + β2 Yt derived in Problem 2..

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9
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(c) With the control Ut = F ?
t (Y(t)), where Ft was given in part (b), show that

E
[
X2

t

]
=
(

a2γ2

c2 + γ2

)t

, ∀t ≥ 0. (21)

(d) With the control Ut = F ?
t (Y(t)), where Ft was given in part (b), and using the result from part (c), show

that the system is stable in the second moment if and only if

|a| ≤

√
1 + c2

γ2 . (22)

(e) In main.ipynb, complete the Observation Noise section (refer to Section 4.1 for information about the
codebase).

(f) Now, suppose c = 0 and γ = 1. The condition from part (d) indicates that if |a| ≤ 1 then the system
is stabilizable in the second moment using the linear memory-1 period-1 greedy policy from part (b).
Empirically verify that with a = 1.01 and this control policy, the system is not stable in the second moment.

Now, define the policy F ′ by

F ′
t (Y(t)) =

 1
2 + 2

5 |Yt| t is even,

− 1
2 −

1
2 |Yt| t is odd.

(23)

(This policy was obtained from Figure 3 of [6].)

In main.ipynb, complete the Period-1 vs Period-2 Observation Noise section. Based on the result of this
section, comment on the optimality of the linear memory-1 period-1 greedy control policy derived in part
(b). Is it the overall optimal policy for the observation noise systems?
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5. Introduction to Policy Gradient

Using optimal control policies derived by hand, such as in Problem 2., Problem 3., and Problem 4., provably
ensures that the control system is stable in the second moment under broad conditions. However, implementing
the optimal control requires knowledge of the environment, namely the parameters a, b, c, α, β, γ. At face value,
this is an unrealistic assumption; most of the time we only have noisy estimates, at most, for these parameters.
Thus, we introduce the policy gradient method to learn a control policy from data without having full knowledge
of the environment.

The policy gradient method is conceptually very similar to gradient descent. It is an iterative procedure where
at each iteration we estimate the gradient of the cost function in Equation (2) and then use the gradient to update
the control policy.

One problem we have is that we cannot run gradient descent on control policies, since we are directly op-
timizing over functions. The solution to this is a rather common idea; we parameterize our control policy
F = (F0, F1, . . . ) by some parameter θ, so it would be written as F (θ), where the policy at time t is Ft(·; θ).
As an example, if we had a linear memory-1 period-1 policy Ft(Y(t); θ) = θYt, then the parameter θ would be
a scalar. As another example in this setting, if we had a neural network policy Ft(Y(t); θ) = θ2q(θ1Yt), where
q : R→ R were some nonlinear function (such as the very popular ReLU q(x) = max{x, 0}), then θ = [θ1, θ2].
Overall, instead of taking a gradient step over F , we just take a gradient step over θ.

Writing down our first attempt at an algorithm, we have the following description:

Algorithm 1 Our first try at policy gradient.
1: function PolicyGradientFirstAttempt
2: Initialize at some parameter θ0

3: for i ∈ {0, . . . , M − 1} do . Using M training iterations

4: Estimate ∇θL(θi)
.= ∇θE

[ ∞∑
t=0
{X2

t+1 + λU2
t }

]
from samples

5: θi+1 ← θi − η∇θL(θi)
6: end for
7: return F (θ)
8: end function

Everything seems fine so far except for how to estimate the quantity

∇θL(θ) = ∇θE

[ ∞∑
t=0

(X2
t+1 + λU2

t )
]

. (24)

Statistics theory tells us that one may estimate the expected value by sampling many, say N , system trajectories
from the environment using the policy F (θ), and then averaging over them. There are three issues with this
approach:

• The sum goes to∞, so an infinitely long trajectory is needed; thus sampling even a single trajectory requires
an infinite amount of data! The fix is to estimate the sum up to some large time index T , so we only need
to collect the first T steps of a given trajectory.

• If we don’t know the true value of Xt, which can happen in systems with observation noise, we cannot
compute even one term of the sum. Instead, we model the term of the sum corresponding to time t, i.e.,

© UCB EECS 127/227AT, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11
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X2
t+1 + λU2

t as the loss collected at time t, which we denote as `t. We assume that even if we do not
know Xt, the term `t is handed to us by the system. This helps our ideas generalize to handle systems with
observation noise.

• Another issue with this approach is that as stated, the only randomness in each trajectory is the initial
condition X0. Thus, many sampled trajectories will look similar to each other, and this greatly decreases
the efficiency of our sampling proceedure, along with making the optimization much more difficult. Thus,
we perturb each control Ut with random noise; that is, instead of inputting the control Ut = Ft(Y(t); θ), we
input the control Ũt = Ut +Wt = Ft(Y(t); θ)+Wt, where Wt ∼ N (0, ω2) is random zero-mean Gaussian
noise.

The expectation is now over the randomness in X0 and Wt; this leads to a wider range of sampled control
policies and greatly helps the optimization overall. We denote the probability density of Ũt given Y(t) with
parameter θ as πθ(Ũt | Y(t)).

Suppose we collect triples (Y j
t , Ũ j

t , `j
t ) for all t ∈ {0, . . . , T} and j ∈ {1, . . . , N}. Our final gradient approxi-

mation is

∇θL(θ) = ∇θE

[ ∞∑
t=0

`t

]
(25)

≈ ∇θE

[
T∑

t=0
`t

]
(26)

≈ E

[(
T∑

t=0
∇θ log

(
πθ(Ũt | Y(t))

))( T∑
t=0

`t

)]
(27)

≈ 1
N

N∑
j=1

(
T∑

t=0
∇θ log

(
πθ(Ũ j

t | Y
j

(t))
))( T∑

t=0
`j

t

)
. (28)

Thus, we present our complete policy gradient approach, which is called the REINFORCE algorithm in the
reinforcement learning literature. For completeness, we include the mechanism we use to sample trajectories
from the environment.
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Algorithm 2 Our policy gradient algorithm.
1: function PolicyGradient
2: Initialize at some parameter θ0

3: for i ∈ {0, . . . , M − 1} do
4: for j ∈ {1, . . . , N} do
5: Begin new trajectory.
6: for t ∈ {0, . . . , T} do
7: Collect observation Y j

t from environment.
8: Sample W j

t ∼ N (0, ω2).
9: Hand control input Ũ j

t
.= Ft(Y j

(t); θi) + W j
t to environment and collect loss `j

t .
10: end for
11: end for

12: Approximate ∇θL(θi) ≈
1
N

N∑
j=1

(
T∑

t=0
∇θ log

(
πθi

(Ũ j
t | Y

j
(t))
))( T∑

t=0
`j

t

)
13: θi+1 ← θi − η∇θL(θi)
14: end for
15: return F (θM )
16: end function

(a) Suppose that Ut = Ft(Y(t); θ) = θYt for θ ∈ R. Find the gradient

∇θ log
(

πθ(Ũt | Yt)
)

∀t ≥ 0. (29)
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6. Input Noise and Observation Noise: Policy Gradient

In this problem, we will use the policy gradient algorithm to find the best linear memory-1 period-1 control
policy for the control noise system of Problem 2. and the observation noise system of Problem 4. in the setting
of unknown system parameters. We will also consider other classes of policies and evaluate and compare their
performance on these two systems. Through this analysis, we aim to empirically support the conclusion that the
optimal greedy linear memory-1 period-1 control policy is:

• The optimal control policy overall, in the input-noise setting of Problem 2..

• Not the optimal control policy overall, in the observation-noise setting of Problem 4..

More specifically, we consider the following three classes of policies:

• The class of linear memory-1 period-1 control policies:

Ft(Y(t); θ) .= θ0Yt. (30)

• The class of affine memory-2 period-1 control policies:

Ft(Y(t); θ) .=

θ0 + θ1Yt, t = 0

θ0 + θ1Yt + θ2Yt−1, t ≥ 1.
(31)

• The class of affine memory-1 period-2 control policies:

Ft(Y(t); θ) .=

θ0 + θ1Yt, t is even

θ2 + θ3Yt, t is odd.
(32)

Each of these policies manifests as a PyTorch nn.Module in the provided sample code (refer to Section 4.1 for
information about the codebase).

(a) For each policy above, implement it in a nn.Module within policies/our_policy_modules.py.

HINT: Look at policies/m1p1_linear_policy_modules.py as an example of how to implement such
modules.

(b) Change driver.py to train each policy on the control noise system described in Problem 2. with b = 1
and β = 1 and test various values of a. Visualize the results and comment on which class of policies tends
to do well? What level of a can each policy stabilize? Include the provided visualizations in your project
writeup.

(c) Change driver.py to train each policy on the observation noise system described in Problem 4. with
c = 1 and γ = 1 and test various values of a. Visualize the results and comment on which class of policies
tends to do well? What level of a can each policy stabilize? Include the provided visualizations in your
project writeup.
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4 Helpful Pointers

4.1 Introduction to Codebase

Alongside the written portion of the project, you will write some code to empirically test the policies you analytically
derive as well as run policy gradient to learn new policies. Fortunately, we have provided an extensive skeleton that
already implements the majority of the code you will need. To ease the learning curve, here we provide a short descrip-
tion of the codebase structure, italicizing the files that you need to edit. You should still read the provided code – even
for parts that don’t require your edits – to understand the logic. Doing so will make debugging significantly easier.

In this project, we use PyTorch, which can be thought of as similar to NumPy but with a slightly different API and
an automatic differentiation module. The latter will eventually help us implement policy gradient.

• environments

– base_environment.py – the parent environment class, which determines the methods that need to be
implemented to define your own environments.

– multiplicative_gaussian_noise_environment.py – defines the multiplicative noise control system
(Definition 2) in the case of Gaussian noise. Also defines various special cases (control noise, state and
control noise, observation noise) that will be discussed in the problem set.

• infrastructure

– pytorch_utils.py - miscellaneous code to deal with PyTorch tensors.

– visualization.py - code to produce plots, i.e., to visualize policy performance.

• policies

– base_policy.py - defines the parent policy class, which contains the methods required to get an action
using the policy. Also defines a stochastic policy class for use during policy gradient, which contains the
methods required to get a noisy action and update the policy during policy gradient training.

– additive_gaussian_policy.py - defines the stochastic policy class which adds Gaussian noise to each
pure action to get a noisy action.

– m1p1_linear_policy_modules.py - defines the class of linear memory-1 period-1 policy modules (de-
fined later), as an example of how to define a policy module.

– our_policy_modules.py - empty code which you will write in Problem 7.

• agent.py - defines an agent which serves as a wrapper for the policy class.

• control_engine.py - defines the training and evaluation loops.

• driver.py - sample code which trains and evaluates a policy. Change as needed.

• main.ipynb - main notebook that accompanies the written problems 3 – 5.
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4.2 Probability Identities

You will need the following probability identities for this project; they should all be covered in any introductory prob-
ability course.

Let X, Y be random variables, which may be correlated or dependent, and let α, β ∈ R be constants.

• Linearity of expectation:
E[αX + βY ] = αE[X] + βE[Y ] . (33)

• Tower rule:
E[E[X | Y ]] = E[X] . (34)

• Independence: if X and Y are independent, then

E[f(X)g(Y )] = E[f(X)]E[g(Y )] for all functions f, g : R→ R, (35)

and
E[f(X) | Y ] = E[f(X)] for all functions f : R→ R. (36)
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5 Extension

Now that you’ve seen some of the research landscape and worked through some of the resulting problems, the last part
of the project is to complete an extension of the project material. An extension is a self-directed addition to the research
elucidated in the related work and the problem set. You should include the extension material in your writeup after the
problem set.

When selecting a topic for the extension, the following questions may be reasonable to ask:

• Was there a question that arose when reading related work or doing the project that seems like it might be
interesting to investigate?

• Do the methods in the papers read for related work or the project itself extend to a particular interesting setting?

• Does a different method solve the same problems considered here? How can the methods be compared (on axes
like efficiency, simplicity, etc)?

The extension would ideally answer at least one of these questions constructively, or some other question along the
same lines. For example, in the first case, you would write down the question and try to answer it (via theory and/or
experiments). In the second case, you would investigate the method in the paper applied to the setting of your interest.
In the third case, you would apply the different method to the same paper, or compare it with some baseline methods.

Often, an extension idea will come from reading related work. Some broad ideas for possible extensions which
heavily draw upon related work are:

• Try to replicate a piece of related work that’s been done and that you have read about. Contrast this with the work
done in the project.

• As we have done in this project, present in detail a simple (or complex if you want) case from a related paper
that you read.

This is definitely not an extensive list. The overall guideline is that we must be able to understand what you have done
from your work. It can help if you can crisply formulate a question that you are trying to answer. If you cannot, then it
might not be a good extension.

Please note that to successfully complete the extension, you do not need to have a breakthrough! It is very difficult
to come up with and answer a significant research question in a few weeks, so you should not feel discouraged if this is
not possible for you. If you are ever feeling stuck, we encourage you to come to office hours to discuss your extension
with us!
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6 Deliverables

Your submission should contain:

1. A PDF of your final report. Your final report should be written in LATEX. You are recommended to use the
template that has been provided on the course website. You may choose not to typeset your equations, but in that
case the document should include very high quality, cleanly handwritten scans of your work; we will not try to
read illegible content. In particular, we prefer that you typeset your work, since it is an important skill to learn,
and a nicely typeset project report (put on your website or CV) can be a strong showcase of the work you have
done.

Your report should include

(a) An abstract, i.e., a paragraph length summary of what is in your document.

(b) An introduction, which describes what the research problem studied in the project is and why it is important.

(c) A literature review, whose guidelines were elaborated in Section 2.

(d) Solutions to all guided portions of the project in Section 3, including relevant plots, figures, or code snippets
that are needed to answer questions.

(e) A detailed description of the work you did for your extension in Section 5.

(f) A contributions section, i.e., a description of which members of your group did what work for the project.

2. Uploaded code, including Jupyter notebooks, for your work in the guided portion of the project (Section 3).

3. Uploaded code, including Jupyter notebooks, for your work in the project extension (Section 5).

All of these deliverables (project report PDF, code for the guided part of the project, and code for the extension) will
have separate Gradescope assignments.
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7 Rubric

To get any grade, you must submit a project report with:

• An abstract summarizing the report;

• An introduction section;

• A literature review section, which contains a literature review as detailed in Section 2;

• A results section, which contains the solutions for the guided portion of the project as detailed in Section 3;

• An extension section, which contains a summary of your extension as detailed in Section 5;

• A contribution section;

as well as upload your code (including Jupyter notebooks) for your work in the guided portion of the project as well as
the extension (if applicable). Once these requirements are met, your grade is based on the quality of the report.

• To get a C, your project report must fulfill the following requirements:

– Your introduction must describe the research problem clearly and in detail;

– Your literature review must summarize both provided papers and at least one more, and contain mostly-
correct answers to the provided questions in Section 2;

– Your results for the guided portion of the project (Section 3) must contain:

∗ A mostly-correct implementation for coding parts in problems 1—4 up to minor bugs;
∗ Correct solutions for all but two mathematical parts in problems 2 and 4.

– Your extension section may be blank (i.e., you do not need an extension to get a C).

• To get a B, your project report must fulfill the following requirements:

– Your introduction must describe the research problem clearly and in detail;

– Your literature review must summarize both provided papers and at least one more, and contain mostly-
correct answers to the provided questions in Section 2;

– Your results for the guided portion of the project (Section 3) must contain:

∗ A mostly-correct implementation for coding parts in problems 1—6, up to minor bugs;
∗ Correct solutions for all but two mathematical parts in problems 2—6.

– Your extension section may be blank (i.e., you do not need an extension to get a B).

• To get a A, your project report must fulfill the following requirements:

– Your introduction must describe the research problem clearly and in detail;

– Your literature reviewmust summarize both provided papers plus at least one more related work and contain
completely correct answers to the provided questions in Section 2;

– Your results for the guided portion of the project (Section 3) must contain completely correct mathematical
solutions and/or code implementations for all parts;

– Your extensionmust contain significant, detailed, and organized work towards summarizing or synthesizing
existing research, as per the guidelines in Section 5. In particular, it should start with a clear research
question and document one or more attempts to answer this question. Note that the question does not need
to be conclusively answered — this rubric item just asks for a thoughtful attempt to be made.
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